
ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding

Guangda Ji
ETH Zürich
Switzerland

guanji@student.ethz.ch

Silvan Weder
ETH Zürich
Switzerland

silvan.weder@inf.ethz.ch

Francis Engelmann
Stranford University / ETH Zürich

USA / Switzerland
francis.engelmann@ai.ethz.ch

Marc Pollefeys
ETH Zürich
Switzerland

marc.pollefeys@inf.ethz.ch

Hermann Blum
Uni Bonn / ETH Zürich
Germany / Switzerland
blumh@uni-bonn.de

Abstract

The performance of neural networks scales with both their
size and the amount of data they have been trained on. This
is shown in both language and image generation. However,
this requires scaling-friendly network architectures as well
as large-scale datasets. Even though scaling-friendly archi-
tectures like transformers have emerged for 3D vision tasks,
the GPT-moment of 3D vision remains distant due to the
lack of training data. In this paper, we introduce ARKit La-
belMaker, the first large-scale, real-world 3D dataset with
dense semantic annotations. Specifically, we complement
ARKitScenes [4] dataset with dense semantic annotations
that are automatically generated at scale. To this end, we
extend LabelMaker Weder et al. [33], a recent automatic
annotation pipeline, to serve the needs of large-scale pre-
training. This involves extending the pipeline with cutting-
edge segmentation models as well as making it robust to
the challenges of large-scale processing. Further, we push
forward the state-of-the-art performance on ScanNet and
ScanNet200 dataset with prevalent 3D semantic segmen-
tation models, demonstrating the efficacy of our generated
dataset.

1. Introduction
Recent progress in deep learning has been mostly focused
on language [5, 25, 26] and 2D image generation [27]. Be-
cause for these two modalities, there is vast amount of train-
ing data available on the web. For text and image gen-
eration, you can simply scrape the internet for all avail-
able data and train your model in an auto-regressive (in the
case of language) or diffusion process (image generation),
where the supervision signal comes from self-supervision
that does not require any labelling. This type of train-

ing revealed surprising properties [34] when scaling it to
billions of data points in both text and image generation
and leads to unseen performance gains enabling completely
new use cases. Yet, this type of training is not avail-
able for scene understanding as objects and other prim-
itives have to be classified in separate categories. This
usually requires ground-truth annotations for the training
data. While there are efforts to relax this requirement
through self-supervision [12, 42] or open-set scene under-
standing [17, 36], state-of-the-art methods [19, 36] all have
some form of direct supervision during training. Thus, an-
notated data is required for learning these tasks. Yet, creat-
ing datasets of similar scales as used in language and image
generation is far from trivial. In this paper, we contribute
the largest 3D real-world indoor semantic dataset and in-
vestigate the following questions: Is there a benefit from
preferring real-world data over synthetic data? How can the
labeling effort be reduced? Do current models profit from
more real-world data?

To answer these questions, we make use of ARK-
itScenes [4], a large collection of RGB-D trajectories man-
ually captured with consumer tablets. While these trajecto-
ries are annotated with sparse object bounding boxes, they
are not complete enough to train competitive models for
scene understanding and lack dense labels that could poten-
tially serve as supervision for semantic segmentation mod-
els. Therefore, we supplement this dataset with dense se-
mantic labels that we automatically generate using an auto-
mated pipeline. This allows us to create the first large-scale,
dense 3D semantic segmentation training dataset that can
be used to (pre-)train any 3D semantic segmentation model.
To demonstrate the value of these vast yet imperfect anno-
tations, we use these labels to re-train different models and
extensively evaluate them on popular 3D semantic segmen-
tation benchmarks.

ar
X

iv
:2

41
0.

13
92

4v
1

 [
cs

.C
V

]
 1

7
O

ct
 2

02
4

More specifically, we build on top of the recent Label-
Maker [33] pipeline, which we extend into LabelMakerv2
with more and updated base models, a more general in-
put data structure, scripts to deploy the pipeline onto large
clusters through docker or SLURM. Using this pipeline, we
process the entire ARKitScenes dataset, which takes 48000
GPU hours on Nvidia 3090 GPUs. Further, we scale this ap-
proach beyond ARKitScenes by integrating commonly used
scanning software into the pipeline. This allows to robustly
generate automatic labels for any scan acquired with ubiqui-
tously available mobile devices. This opens up a road to po-
tentially reach so far unseen scales in 3D datasets for scene
understanding. The automatically generated ARKitScenes
labels are used to pre-train the currently most-used 3D seg-
mentation methods, MinkowskiNet [6] and PTv3 [36]. We
find that without labeling any data manually, extending the
scale of real-world training data improves the performance
of both models on multiple benchmarks, or achieves the
same performance as with even larger synthetic data.

In summary, we answer the following research question:
does large-scale pre-training with automatic labels show
similar trends as it does for language and image generation
tasks? We do that by making the following key contribu-
tions:
• Improving LabelMaker [33] to LabelMakerV2 by incor-

porating new base models and improving robustness to
large-scale scenes.

• Generating the largest existing real-world dataset with
dense semantic annotations on 186 classes.

• We push forward the state-of-the-art performance of point
transformer on ScanNet and ScanNet200 by a large mar-
gin which our gerenated dataset.
The ArkitLabelMaker dataset and LabelMakerV2

pipeline code is available at labelmaker.org.

2. Related Works
Datasets for 3D semantic segmentation. 3D seman-
tic segmentation is to classify each point in a 3D point
cloud into a set of predefined semantic categories. Promi-
nent datasets for training and evaluation include Scan-
Net [10]/ScanNet200 [29], and the Stanford 3D Indoor
Scene Dataset [1] (S3DIS), which comprises 6 large-scale
indoor areas with 271 rooms. Both datasets includes
RGB-D frames captured from real-world. In addition
to real-world datasets, Structured3D [41] offers a photo-
realistic synthetic dataset with 3.5K house designs, and
Replica [31] provides 18 high-quality reconstructed scenes.
ARKitScenes [4] is the most extensive collection of in-
door scenes to date, featuring 5047 captures of 1661 unique
scenes. RGB-D data is captured with Apple LiDAR scan-
ner. High-quality surface reconstruction and the bounding
box for object detection are also provided. However, dense
annotations for semantic or instance segmentation is absent

from this dataset. Therefore, it cannot be directly used in
training models for 3D semantic segmentation.

LabelMaker Weder et al. [33] is an automatic semantic
segmentation annotation pipeline that consolidates outputs
from state-of-the-art 2D segmentation models with an addi-
tional feature for translating frame-wise 2D labels into co-
hesive 3D point cloud labels. In this work, we employ an
enhanced version of LabelMaker to generate dense seman-
tic segmentation annotations for ARKitScenes.

3D semantic segmentation models. The neural network
architecture for processing 3D input data can be classified
into three main categories: voxel-based, point-based, and
transformer-based methods. Voxel-based methods trans-
form points into fixed-sized voxel grids before passing
them through the neural network. MinkowskiNet [6] is
one of the most well-known model. Mix3D [21] en-
hances MinkowskiNet through effective 3D data augmen-
tation techniques. PonderV2 [42] explores self-supervised
learning from RGB-D data to improve the performance of
the MinkowskiNet architecture. Point-based methods in-
cludes [3, 11, 15, 16, 23, 24, 32, 38]. However, there is a
recent shift from models based on point-wise convolutions
to point-based transformer models [14, 22, 30, 40]. No-
table examples include Point Transformer [40], PTv2 [35],
and PTv3 [36], which are developed towards better effi-
ciency and scaling ability for 3D inputs. Point Prompt
Training [37](PPT) introduces a novel training paradigm
enabling the simultaneous training of multiple datasets with
diverse label spaces. Combining PTv3 with PPT achieves
state-of-the-art performance on the ScanNet/ScanNet200
semantic segmentation benchmark.

In this paper, we address the main limitation of existing
datasets for 3D semantic segmentation: their limited size.
We suspect that this limited size negatively impacts the per-
formance of commonly used models as their performance is
limited without additional training data available.

3. method

3.1. LabelMaker

As we build on top of LabelMaker [33], we briefly review
the essential steps of the pipeline proposed by Weder et al..
LabelMaker is an automatic labelling pipeline for 2D and
3D semantic annotation. As shown in [33], it generates la-
bels that are on par with the human annotators in [9]. It
automatically generates these labels by exploiting an en-
semble of base models that predict semantic maps for every
input frame in an RGB-D trajectory. Since the base models
predict segmentation in different label spaces based on their
training data, they are then mapped to a unified label space.
Only through this mapping, the different base models can be
used in a subsequent ensemble. Thus, [33] defined a map-
ping from every label space into a carefully curated label

https://labelmaker.org/

: Video Visualization

Omni-
Depth

H
H
A

C
M
X

OVSeg

Grounded-SAM

InternImage

Mask3D

CMX Model

Download &
Preprocessing

Consensus

Point-Lifting

Base Models

Figure 1. Dependency graph of the LabelMakerv2 pipeline.
Our LabelMakerv2 pipeline has a clear dependency structure that
has to be handled in the distributed processing of the data. This
has to be especially respected when recovering from job failure.
There, our recovery strategy checks for unfinished jobs in the de-
pendency graph before submitting any new jobs to avoid unnec-
essarily wasting compute resources. The boxes with thick yellow
frame donotes visualizable tasks. These are used during inspection
and job quality assurance.

space based on wordnet synkeys. After mapping all base
model predictions into the unified label space, the individ-
ual predictions are aggregated into one single consensus for
every frame of the RGB-D trajectory. As the RGB-D tra-
jectory provides multi-view information of the scene, the
individual frames can be further denoised by lifting them
into 3D and aggregate the point-wise predictions across the
different frames. The final labels can either be directly used
as 3D labels for 3D semantic segmentation or projected into
2D and be used for training or evaluating 2D semantic seg-
mentation models. In this paper, we improve this pipeline
to robustly scale to large-scale datasets and show its bene-
fit to pretraining 3D semantic segmentation models. In the
following, we describe the improvements and the scaling in
more detail.

3.2. Improving Labelmaker to make it scale to
ARKitScenes [4]

While LabelMaker [33] presented an automatic labelling
tool that produces annotations on par with human annota-
tors, we enhance the pipeline with two changes to further
improve its performance that is necessary to robustly gen-
erate high-quality annotations for large-scale datasets. The
complete pipeline is shown in Figure 1.

Integrating Grounded-SAM LabelMaker [33] used
several state-of-the-art base models in its esemble. Yet,
they did not leverage the potential of Segment Anything
(SAM) [13], a 2D segmentation model that was trained on
a large-scale datasets and robustly generalizes to many sce-
narios. As we want to scale LabelMaker to any environ-
ment, our aim is to integrate this prior into the pipeline.
However, it is in not straight forward to efficiently use this
model for semantic segmentation. To this end, Grounded
SAM combines Grounding DINO [18] with SAM [13].

Grounding DINO locates instances’ bounding boxes given
semantic labels or natural languages, while the later model
generates high quality segmentation masks for these bound-
ing boxes. We integrate this model by adapting it to Label-
Maker’s unified labelspace such that it can act as an addi-
tional vote in the ensemble.

Aligning to gravity For ideal performance, many se-
mantic segmentation models require alignment of the grav-
ity direction with the coordinate system of the data they
were trained on. Yet, large-scale data is not aligned with
gravity by default. For example in ARKitScenes, occa-
sional phone rotation leads to inconsistencies in the orien-
tation of 2D images. Passing those rotated images to La-
belMaker’s base models results in decreased performance
and misclassifications (e.g. mistaking the floor with the
ceiling). Therefore, we project sky direction, which cor-
responds to the z-axis of the pose coordinate system from
ARKit (that uses the IMU), onto each 2D frame. Then, we
compute the angle between sky direction and upward direc-
tion α. Given this angle, we rotate the image by k · π2 , where
k = argmins(|sπ

2 − α|) to make the sky direction roughly
upward, and rotate the predicted segmentation back to its
original orientation after passing it through model to align
it with its coordinate system.

Optimizing compute resource scheduling. We op-
timize the code to deploy each individual piece of the
pipeline of Figure 1 as individual jobs to a GPU cluster, with
SLURM as a dependency manager between the pipeline
pieces. To optimize the overall execution time, it is there-
fore important to be able to estimate the processing time
of each piece of the pipeline at the point of job submis-
sion. ARKitScenes contains scenes of a wide range of sizes,
spanning from a minimum of 65 frames to a maximum of
13796, and different parts of the pipeline scale differently
with increasing scene size. To figure out the minimum re-
sources requirements, we select 11 scenes of varied sizes
uniformly distributed within the minimum and maximum
range and record their resources usage. While most jobs are
not sensitive to scene size and can suffice with a fixed re-
source allocation, the base models exhibit greater sensitivity
to scene size. We interpolate resource needs with respect to
scene size and summarize the empirical numbers in the Ap-
pendix. Through this, we ensure that we request minimal-
required resources, so that we have lowest job waiting time
and less idle compute power.

3.3. Scaling beyond existing datasets

In this paper, we demonstrate the effectiveness of the au-
tomated labels generated for a large-scale dataset for pre-
training 3D semantic segmentation models. Yet, ARK-
itScenes is still limited in terms of variance in scene type.
Through modern mobile devices, RGB-D scanning is ubiq-
uitously available and a excellent source for 3D data. Yet,

it has not been possible to exploit this data for 3D se-
mantic segmentation without expensive human annotation.
While LabelMaker [33] provided an automatic annotation
pipeline, it was not readily available for data provided by
mobile devices. To overcome this limitation, we integrated
a well-established scaninng platform for iOS (Scanner 3D)
into our imporved LabelMaker pipeline. This allows any-
one with an iOS device to collect data and automatically
generate human-quality annotations that can either be used
for training or evaluation of 3D semantic models at an un-
seen scale.

To this end, we built a integration of Scanner 3D into
LabelMakerv2. This involves two essential steps. First, we
align the coordinate system of Scanner3D with the coordi-
nate system of LabelMakerv2 by transforming all individ-
ual frames into the LabelMakerv2 system. Second, we have
to solve the challenge that does not provide direct access
to the individual depth frames but only provides a dense
reconstructed mesh. To overcome this hurdle, we render
a depth map from the mesh for every camera view in the
scanned trajectory. Therefore, we also align the mesh with
the LabelMakerv2 coordinate system and use Open3D to
render the corresponding depth maps. Together with the
corresponding RGB images and camera poses, these depth
maps are subsequently transformed into the LabelMakerv2
format such that the trajectory can be processed by Label-
Makerv2.

4. Results

4.1. Baselines

We evaluate the effectiveness of our ARKitScenes La-
belMaker dataset on two distinct network architectures:
MinkowskiNet [6] and Point Transformer [8, 35–37].
MinkowskiNet is the most established architecture. Many
modifications [19, 42] have been proposed to Minkowsk-
iNet and it is still the underlying architecture of most top-
performing models in 3D Semantic Segmentation bench-
marks. Point Transformer [36] is a very recently proposed
architecture and the current state-of-the-art on the ScanNet
and ScanNet200 benchmarks. Since transformers are in
general known to profit from large-scale training data, we
also train on this architecture. From these two architectures,
we derive our three relevant baselines:

Vanilla MinkowskiNet. This is the standard Minkowsk-
iNet model based on [6], which most 3D semantic segmen-
tation methods compare to. In this paper, we use the com-
monly used ‘Res16UNet34C‘variant of MinkowskiNet to
guarantee fair comparison to all other baselines.

PonderV2 [42]. PonderV2 [42] is an unsupervised pre-
training strategy for semantic segmentation. For large-scale
training data, manual labelling of training data is infeasible
and leaves essentially two alternatives: Automatic labelling

of the training data, which is what we investigate in this
work, or an unsupervised strategy that learns useful features
on the data from a different loss. PonderV2 is the state-
of-the-art method for unsupervised training. While the best
performing ponder-based model combines different training
datasets, model architecture modifications, and the unsuper-
vised pretraining, our evaluation focuses on comparing the
two pretraining paradigms.

PointTransformerV3 (PTv3) [36]. Point Transformer
V3 (PTv3) [36] is a recently proposed method that aims
to speed up transformer architecture and scale up. Point
Prompt Training (PPT) is a large-scale training paradigm
aiming to jointly train multiple datasets of various label
spaces together. This is a different approach than the La-
belMaker [33] approach of translating label spaces and then
training on a common label space. The combination of
PTv3 and PPT achieves state-of-the-art results on Scan-
Net/ScanNet200 semantic segmentation benchmark.

4.2. Datasets and Metrics for Evaluation

ScanNet [9]. ScanNet comprises 1513 densely annotated
scans across 707 distinct indoor scenes, totaling 2.5 mil-
lion RGB-D frames. It stands as one of the most widely
used and influential benchmark datasets for indoor 3D scene
understanding. ScanNet is annotated by humans using the
NYU40 label space and evaluated on a subset of 20 classes
from NYU40.

ScanNet200 [28]. While only 20 classes are used in the
ScanNet benchmark, the original dataset is annotated with
many more classes. ScanNet200 [28] leverages these an-
notations and organizes them into a new benchmark with
200 classes that are of higher-resolution than the original
Scannet classes. Given the large-number of different cat-
egories generated by our LabelMakerv2 pipeline, we also
pre-train the models for this task and evaluate them on the
ScanNet200 benchmark.

ScanNet++ [39]. ScanNet++ is a dataset of 460 high-
resolution 3D indoor scenes with dense semantic and in-
stance annotations, captured using a high-precision laser
scanner and registered images from a DSLR camera and
RGB-D streams. It focuses on long-tail and multi-labeled
annotations. In its semantic segmentation benchmark, mod-
els are evaluated over 100 labels.

S3DIS [2]. S3DIS is a 3D semantic dataset containing 6
large-scale indoor areas from 3 different buildings, labeled
with 13 semantic classes. We follow the practice of [36] and
create a dataset with an effective size of 406. We only use
this dataset during the training of the PTv3 [36] baseline.

Structured3D [41] is a large-scale indoor synthetic
RGB-D dataset featuring 6519 training scenes and 1697 test
scenes. It is annotated with a label space of 25 classes.
Structured3D and S3DIS only used in PTv3+PPT joint
training and we adopt pre-processed version of these two

datasets from [36]. The actual dataset size used in train-
ing is different from the original, and we refer to the actual
number in Table 1.

ARKit LabelMaker (Ours). This is the dataset gen-
erated with the our method described above. The resulting
dataset contains 5019 trajectories, from which we take 4471
for training and 548 for validation according to the offi-
cial train-val split provided by the original ARKitScenes [4]
dataset. For every scene, we created 3D pointcloud as-
sociated dense semantic labels in the original LabelMaker
wordnet label space (186 classes). We denote this dataset
as ALC. Moreover, we utilized the provided mapping from
wordnet label space to the ScanNet200 label space and
mapped all labels to this space. This resulted in the our
ALS200 dataset. We use this data to train the different
baseline models described above. To increase efficiency
and make the experimental settings comparable to previ-
ous studies, we perform down-sampling on 3D meshes to
a voxel size of 2cm. Normal information is preserved
and down-sampled simultaneously. Table 1 illustrates the
scale of each dataset. ARKitScenes LabelMaker dataset is
the largest diversely annotated real-world indoor semantic
dataset.

Metrics. We follow the standard metrics of the Scan-
Net semantic segmentation task and compute the mean
and per-class intersection-over-union ratio (IoU) on Scan-
Net/ScanNet 200.

Dataset #train #val #test real #label

S3DIS 406 - - 13
ScanNet/ScanNet200 1201 312 100 20 / 200
ScanNet++ 230 50 50 100
ARKit LabelMaker 4471 548 - 186
Structured3D 6519 - 1697 25

Table 1. The size of dataset that is used for training and evalua-
tion in this work. We provide by far the largest real-world labeled
training dataset compared to existing real-world datasets. We pro-
vide automatically generated dense semantic annotations for 4471
training trajectories and 548 validation trajectories.

4.3. Experiment Settings

We adopt three approaches to evaluate the effectiveness of
our ARKitScenes LabelMaker dataset.

Pre-training. To investigate whether automatic labels
are useful to learn strong features from imperfect annota-
tions, we pre-train both, Minkowskinet [7] and PointTrans-
formerV3, on our generated ALS200 dataset. Afterwards,
we fine-tune the pretrained models on the ScanNet and
ScanNet200 dataset, respectively.

For MinkowskiNet, we employ the Res16UNet34C ar-
chitecture as our backbone model. During pre-training, we
utilize the AdamW optimizer with a learning rate of 0.01
and OneCycleLR scheduler, training the network for 600

epochs. If the label space is changed for fine-tuning, we
replace the classification head and exclusively train it with
the same learning rate setting until convergence while the
rest of the model is fixed. Then, the entire network under-
goes fine-tuning with a learning rate of 0.001, while other
settings are kept unchanged.

For PTv3, we adhere to the settings outlined in [36] em-
ploying the AdamW optimizer with OneCycleLR for 800
epochs of training. However, the learning rate during pre-
training is adjusted to 0.0016. Similar to the fine-tuning
of MinkowskiNet, we initially freeze the backbone during
fine-tuning and solely train the classification head until con-
vergence. Then, we fine-tune on ScanNet or ScanNet200
with a reduced learning rate of 0.0006. Besides ALS200,
we also pre-train PTv3 with ALC label space as the map-
ping from wordnet to ScanNet200 may reduce neural stim-
ulation.

Co-training with ALS200. With this experiment, we
aim to investigate if our ALS200 dataset can be simply com-
bined with existing datasets for increasing the dataset size
and, therefore, the performance of the resulting model. To
this end, we combine ALS200 with the ScanNet200 dataset
and train a MinkwoskiNet from scratch. Due to resource
limitations, we could only train MinkowskiNet with this
combined dataset. The training setting is exactly same as
the pre-training stage of MinkowskiNet described above.

Joint-training. We employ PTv3+PPT for joint train-
ing on multiple datasets across multiple label spaces. Be-
sides ScanNet/ScanNet200, ScanNet++, S3DIS and Struc-
tured3D, we add our ALC dataset. We choose Label-
Maker’s wordnet label space in order to provide the net-
work with maximum possible semantic class stimulation.
We use the exact same setting of PTv3+PPT from [36]. We
use AdamW optimizer with OneCycleLR scheduler and a
learning rate of 0.05. Additionally, we incorporate the La-
belMaker WordNet label space into the norm layer and the
final classification head.

4.4. Results

In Table 2, we present the results for the ScanNet dataset.
In the case of MinkowskiNet [7], we can not only show
that pre-training on our large-scale, real-world ALS200
dataset significantly improves the mean intersection-over-
union compared to vanilla training, but it also significantly
outperforms to other variants of pre-training. Pre-training
on our imperfect yet automatically generated labels is su-
perior to self-supervised pre-training (PonderV2 [42]) and
extensive data augmentation (Mix3D [20]). This indicates
that direct supervision with scale in training data for super-
vised learning is essential for 3D semantic segmentation.
Additionally, the ALS200/ALC pre-trained PTv3 exhibits
comparable or superior performance to large-scale multi-
dataset joint training. This proves that our dataset is more

Method Training Data val test

MinkUNet [7]

vanilla ScanNet 72.4 73.6
PonderV2 [42] ScanNet (self-supervised) → ScanNet 73.5 -
Mix3D [20] ScanNet 73.6 78.1
fine-tune (Ours) ALS200 → ScanNet 77.0 -

PTv3 [36]

vanilla ScanNet 77.5 77.9
fine-tune (Ours) ALS200 → ScanNet 81.2 -
fine-tune (Ours) ALC → ScanNet 80.6 79.0
PPT [36] ScanNet + S3DIS + Structure3D 78.6 79.4
PPT (Ours) ScanNet+ ScanNet200 + ScanNet++ + Structure3D + ALC 81.1 79.8

Table 2. Semantic Segmentation Scores on ScanNet20. We
compare different training strategies for two top-performing mod-
els (PointTransformerv3 [36] and MinkowskiNet [7]) on the Scan-
Net20 dataset. We can show for both models adding ALS200
through pre-training and co-training improves the performance for
both models. With PonderV2 [42] and Mix3D [20], we compare
large-scale pretraining to two other training strategies. We can
show that large-scale pre-training is superior to both, extensive
data augmentation (Mix3D) and self-supervised pre-training (Pon-
derV2).

Method Training Data val test

MinkUNet [7]

vanilla ScanNet200 29.3 25.3
fine-tune (Ours) ALS200 → ScanNet200 30.1 27.4
co-training (Ours) ALS200 + ScanNet200 30.6 -

PTv3 [36]

vanilla ScanNet200 35.2 37.8
fine-tune (Ours) ALS200 → ScanNet200 38.4 -
fine-tune (Ours) ALC200 → ScanNet200 38.7 38.4
PPT [36] ScanNet200 + S3DIS + Structure3D → ScanNet200 36.0 39.3
PPT(Ours) ScanNet+ ScanNet200 + ScanNet++ + Structure3D + ALC 40.3 41.4

Table 3. Semantic Segmentation Scores on ScanNet200 [29].
To investigate our large-scale dataset also helps with long-tail
categories, we evaluate it on the ScanNet200 dataset. For both,
MinkowskiNet [7] and PointTransformerv3 [36], we compare it to
vanilla training as well as training procedure proposed in [36]. We
can show that common neural networks benefit from pre-training
on automatically generated large-scale annotations compared.

data-efficient compared with synthetic dataset.
Similar trends are also visible in Table 3, where we show

the results on the ScanNet200 dataset. The co-training
of MinkowskiNet on the ScanNet200 dataset demonstrates
that our ALS200 dataset facilitates training without induc-
ing a domain gap in comparison to the ScanNet200 dataset.

We also incorporate our ARKit LabelMaker dataset into
the joint training for PTv3+PPT, leading to a significant
boost in validation and test mIoU. This version of PTv3
achieves state-of-the-art performance on both ScanNet and
ScanNet200, with the latter benefiting greatly from im-
proved tail class mIoU(Table B1).Our dataset’s effective-
ness serves as a good complementary for rare classes in
ScanNet200.

In Table 4 we show the results on ScanNet++ dataset. As
on the other datasets, pre-training on ALC improves vali-

PTv3 Variant Training Data #Data val mIoU test top-1/3 mIoU

vanilla ScanNet++ 713 41.8 45.8 / 69.7
fine-tune (Ours) ALC200 → ScanNet++ 4471 → 713 42.5 43.7 / 65.5
PPT [36] ScanNet200 + ScanNet++ + Structure3D 45868 45.3† 46.5 / 71.1
PPT (Ours) ScanNet200 + ScanNet++ + ALC 11168 44.5 46.1 / 70.8
PPT (Ours) ScanNet+ ScanNet200 + ScanNet++ + Structure3D + ALC 30386 44.6 46.1 / 68.5

Table 4. Semantic Segmentation Scores on ScanNet++ [39].
We evaluated the efficacy of our ALC dataset on the ScanNet++
benchmark using both pre-training and joint training methods. †:
this number comes from Wu et al..

Figure 2. Self-captured scenes and the semantic segmentation
generated by LabelMakerv2. This figure shows visually appeal-
ing segmentation results, therefore illustrates the effectiveness of
our pipeline. The color mapping is defined in original Label-
Maker’s repository.

dation set performance compared to vanilla PTv3 training
on ScanNet++. However, test set performance deteriorates.
For joint training, we conducted two trials: one with a small
and one with a larger training scale. In the first, we excluded
Structured3D, as PTv3’s updated version (28,212 samples)
was too large for our machines. In the second trial, we use
the old version of Structured3D which has 8216 samples
and followed Wu et al.’s suggestion to exclude S3DIS due
to its high memory consumption. These results suggest that
the ALC dataset may have limited benefits for ScanNet++
training.

4.5. LabelMakerv2 is generalizing beyond ARK-
itScenes

In order to demonstrate the effectiveness of our LabelMak-
erv2, we utilize it to process two self-captured scenes—a
kitchen and a fireplace—taken in a holiday cottage using an
iPhone 12 Max. In Figure 2, we present the reconstructed
colored scenes alongside their semantic segmentation. It
demonstrates visual accuracy and plausibility, confirming
the effectiveness of our pipeline.

https://github.com/cvg/LabelMaker/blob/main/labelmaker/mappings/label_mapping.csv

4.6. Limitations & Broader Impact

While we extend LabelMaker [33] with a better pointcloud
pipeline, we leave out the part that generates 2D segmenta-
tion maps. The computational cost of the NeRF-based lift-
ing over the whole ArKitScenes dataset is beyond our avail-
able resources. It would be an interesting future direction of
research to explore if training 2D models on this data yields
similar performance gains as it is the case for 3D models.

Furthermore, 20 scenes in ARKitScenes processing are
excluded due to lack of pose data. Our LabelMakerv2 re-
quires accurate poses, but future iterations could integrate
techniques such as bundle adjustments to reconstruct miss-
ing pose data.

Like the original LabelMaker [33], also our improved
pipeline does not have perfect accuracy. While [33] showed
that the accuracy is on par with crowd-sourced human anno-
tations, there is always a danger of introducing systematic
mistakes when training on noisy labels. For safety critical
applications, rigorous testing on accurately annotated data
is even more important when using tools like ours to source
training data.

Does large-scale pre-training with automatic labels show
similar trends as it does for language and image generation
tasks? The discussed results point in this direction, with a
measurable improvement to different models when pretrain-
ing on ArKitLabelMaker. However, training on large-scale
real-world data ‘only’ achieves test results on par with the
current SOTA based on synthetic data of even larger scale.
Our conclusion is that real-world data is much more effec-
tive than syntethic data, but even larger overall scale is nec-
essary to push the performance beyong state-of-the-art. Our
developed pipeline makes it easy to provide training data
once more scans are available.

5. Conclusion

In this paper, we presented the largest, real-world 3D RGB-
D dataset with dense semantic annotations. The dense an-
notations are automatically generated using an improved
version of LabelMaker [33], which we dub LabelMakerv2.
While these labels are automatically generated and there-
fore imperfect, we demonstrate their value to pre-training
commonly used 3D semantic segmentation methods sig-
nificantly improving the performance of existing models
trained with traditional, self-supervised, or augmentation-
heavy training strategies. This allows to draw parallels to
recent advances in language and image generation, where
scaling up the size of training data led to huge gains in per-
formance. Therefore, we also provide an integration of a
commonly available 3D scanning software for iOS to en-
able the usage of mobile devices to easily generate more
data for training and evaluation.

Acknowledgement
We give our many thanks to Xiaoyang Wu, one of the au-
thors of Point Transformer V3 [36], who gave us many ad-
vice on the training of PTv3.

ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding

Supplementary Material

A. Dataset and code download availability
Except from labelmaker.org, our dataset is available
on huggingface at https://huggingface.co/
datasets/labelmaker/arkit_labelmaker with
DOI of 10.57967/hf/2389. The pipeline code for La-
belMakerV2 is available at https://github.com/
cvg/LabelMaker/. The preprocessing and training
code for MinkowskiNet model and PointTransformerV3 is
documented in https://github.com/quantaji/
labelmaker-mix3d and https://github.com/
quantaji/LabelMaker-Pointcept.

B. Head, common and tail split mIoU scores
for ScanNet200

In Table B1, we present the statistics for head, common, and
tail classes. Our ALS200-pretrained MinkowskiNet signif-
icantly outperforms in common class mIoU and the jointly
trained version of PTv3 shows a large increase in tail class
mIoU.

Method Training Data Validation Test
head common tail head common tail

MinkUNet [7]

vanilla ScanNet200 52.3 22.5 13.2 46.3 15.4 10.2
fine-tune (Ours) ALS200 → ScanNet200 53.9 24.2 12.5 49.0 19.4 9.4
co-training (Ours) ALS200 + ScanNet200 55.1 24.7 12.4 - - -

PTv3 [36]

vanilla ScanNet200 56.5 30.1 19.3 - - -
fine-tune (Ours) ALS200 → ScanNet200 58.6 33.0 23.8 - - -
fine-tune (Ours) ALC200 → ScanNet200 58.2 33.1 25.0 58.2 30.9 22.2
PPT [36] ScanNet200 + S3DIS + Structure3D → ScanNet200 - - - 59.2 33.0 21.6
PPT(Ours) ScanNet+ ScanNet200 + ScanNet++ + Structure3D + ALC 60.9 35.48 24.6 61.0 32.2 27.1

Table B1. ScanNet200 validation and test mIoU for head, com-
mon and tail classes. For MinkowskiNet, ARKit LabelMaker
pre-trained network shows significant improvement on head and
common classes. For PTv3, we see improvements across all three
splits.

C. Detailed process of applying LabelMaker to
ARKitScenes

ARKitScenes is one of the largest indoor 3D scenes dataset.
It consists of 5047 parsable scenes of various size. We con-
sider a scene parsable if the RGB-D trajecotry comes with
associated pose data. Processing these scenes with our im-
proved LabelMaker pipeline requires deliberate engineering
with the following goals: a) Bring the data in to the format
required by LabelMaker [33] b) Robust processing to not
waste compute on failures, c) Improved parallelization to
speed up processing. d) Accurate resource estimation to
prevent waste of compute resources and longer job waiting
time. e) Fast failure identification and results inspection.

Transforming the data LabelMaker [33] requires a spe-
cific data format to be able to reliably process all data. All
trajectories require posed RGB-D data and a denoised 3D
model that is used by Mask3D. ARKitScenes comprises
data of varying resolutions and sampling rates. Depth data
is captured at 256×192 and 60 FPS, while the RGB frames
are recorded at 640× 480 and 30 FPS. Therefore, synchro-
nization is required to process the data with LabelMaker. To
this end, we match each RGB frame with the closest depth
frame in time and we resize the depth frame to RGB frame’s
resolution. Pose data, originally at 10 FPS, is interpolated
using rotation splines to synchronize with each RGB frame.
To obtain a 3D mesh of each scene that can be processed by
Mask3D, we reconstruct the 3D model by fusing the syn-
chornized posed RGB-D data using TSDF fusion and then
extract mesh with marching cube algorithm. We empirically
chose a voxel size of 8mm and a truncation distance of 4cm
for fusion.

Building a scalable pipeline LabelMaker [33] can be
decomposed into individual modules such as the individual
base models, the consensus computation, and the 3D lift-
ing. This modular nature allows to build a scalable pipeline
using popular high-performance computing toolboxes. As
the different base models have different runtimes, we had to
leverage dependency management system that can handle
different dependencies of the pipeline steps. This architec-
ture allows us to effectively leverage large-scale computing
and distribute the processing across many different nodes.

In more detail, we decompose the pipeline into several
jobs (ordered by dependency) for each scene:
1. Preprocessing: Downloading the original scene data,

transforming it into LabelMaker format, and run TSDF
fusion to get the 3D mesh of the scene.

2. Forwarding 2D images or 3D meshes to each base mod-
els: Grounded-SAM, Mask3D, OVSeg, CMX, InternIm-
age. (all jobs depends on step 1.)

3. Getting the consensus label from base models’ labels.
(depends on all elementary jobs in step 2.)

4. Lifting the 2D consensus label into 3D. (depends on step
3.)

5. Rendering the outputs of base models or consensus into
videos for visualization. (depends on steps 2. or 3.)

6. Post-processing, including removing temporary files and
get statistics of each tasks. (depends on all steps above)
Optimizing compute resource scheduling. ARK-

itScenes contains scenes of a wide range of sizes, spanning
from a minimum of 65 frames to a maximum of 13796, and
different parts of the pipeline scale differently with increas-
ing scene size. To figure out the minimum resources re-

https://labelmaker.org
https://huggingface.co/datasets/labelmaker/arkit_labelmaker
https://huggingface.co/datasets/labelmaker/arkit_labelmaker
https://github.com/cvg/LabelMaker/
https://github.com/cvg/LabelMaker/
https://github.com/quantaji/labelmaker-mix3d
https://github.com/quantaji/labelmaker-mix3d
https://github.com/quantaji/LabelMaker-Pointcept
https://github.com/quantaji/LabelMaker-Pointcept

Task #CPU RAM Time GPU

Download & Prepossessing 2 24G 4h -
Video Rendering 8 32G 30min -
Grounded-SAM 2 12G 6h 3090 ×1
OVSeg 2 8G 8h 3090 ×1
InternImage 2 10G 8h 3090 ×1
Mask3D 8 16G 1h 30min 3090 ×1
OmniData 8 8G 2h 3090 ×1
HHA 18 9G 2h -
CMX 2 8G 3h 3090 ×1

Consensus 16 16G 2h -

Point Lifting 2 72G 4h -

Table C2. Requested resources for each task. We report the av-
erage resources required by the individual steps of the LabelMak-
erv2 pipeline. The required cores, RAM, and GPU time varies
across the different jobs. Through our job scheduling mecha-
nism, we ensure that the required compute is optimially distributed
across all jobs.

quirements, we select 11 scenes of varied sizes uniformly
distributed within the minimum and maximum range and
record their resources usage. While most jobs are not sensi-
tive to scene size and can suffice with a fixed resource allo-
cation, the base models exhibit greater sensitivity to scene
size. We interpolate resource needs with respect to scene
size and summarize the empirical numbers into Table C2.
Through this, we ensure that we request minimal-required
resources, so that we have lowest job waiting time and less
idle compute power.

Assuring the quality of the individual processings. In
order to assure high-quality labels produced by our im-
proved pipeline, we have built tooling to efficiently check
for failures of the processed scenes. To this end, we store
the logs and statistics of each job and built visualization
tools for this data as well as the intermediate predictions.
This allows us to conveniently browse at scale through the
predictions and identify individual failures.

Failure handling and compute resource optimization.
When doing large-scale processing on a high-performance
compute cluster, a common issue is the failure of jobs. This
can happen for several reasons such as node crashing, un-
expected memory usage, and many more. Therefore, the
processing pipeline has to be robust to these failures. Ad-
ditionally, compute should not be wasted when recovering
from these failures. Therefore, we designed a simple yet ef-
fective strategy for efficiently recovering from job failures.
Before every restart is triggered for a scene, we analyze both
the logs and file system to identify the jobs that have not fin-
ished for this scene. Once these jobs have been identified,
we only resubmit these jobs. This ensures that no compute
resource is used in rerunning completed tasks.

C.1. Implementation Details

We use a CentOS 7 based SLURM cluster to process all
the data, which is capable of handling task dependencies
and parallel processing. Before submitting jobs for a single
scene, we first check the progress of each job and gener-
ate a SLURM script to submit only those unfinished jobs.
This ensures that no compute resource is used in rerunning
completed tasks.

We employ test time augmentation by forwarding all
models twice, with Mask3D using two different random
seeds and other models being mirror flipped. Following the
practice of LabelMaker [33], we assign equal weights to
each model when calculating the consensus, although these
weights are configurable in our pipeline code. Since we
are primarily interested in the 3D labels that can be used
for pre-training 3D semantic segmentation models, SDFS-
tudio training and rendering are omitted due to their lengthy
processing times. Further, we enhance the pipeline by stor-
ing both the most and second most voted predictions along-
side their respective vote counts. This information is useful
when we want to investigate on the uncertainty across the
base models. We leave the exploitation of this information
as potential future direction of research.

References
[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3D Seman-
tic Parsing of Large-Scale Indoor Spaces. In CVPR, 2016. 2

[2] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint 2D-
3D-Semantic Data for Indoor Scene Understanding. ArXiv
e-prints, 2017. 4

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. arXiv,
2018. 2

[4] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Yuri Fei-
gin, Peter Fu, Thomas Gebauer, Daniel Kurz, Tal Dimry,
Brandon Joffe, Arik Schwartz, et al. Arkitscenes: A di-
verse real-world dataset for 3d indoor scene understanding
using mobile rgb-d data. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021. 1, 2, 3, 5

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 1

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075–3084,
2019. 2, 4

[7] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In CVPR, 2019. 5, 6, 1

[8] Pointcept Contributors. Pointcept: A codebase for point
cloud perception research. https://github.com/
Pointcept/Pointcept, 2023. 4

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 2, 4

[10] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. ScanNet:
Richly-Annotated 3D Reconstructions of Indoor Scenes. In
CVPR, 2017. 2

[11] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise Convolutional Neural Network. In CVPR, 2018. 2

[12] Li Jiang, Zetong Yang, Shaoshuai Shi, Vladislav Golyanik,
Dengxin Dai, and Bernt Schiele. Self-supervised pre-
training with masked shape prediction for 3d scene under-
standing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1168–
1178, 2023. 1

[13] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 3

[14] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified Trans-
former for 3D Point Cloud Segmentation. In CVPR, 2022.
2

[15] Loic Landrieu and Martin Simonovsky. Large-scale Point
Cloud Semantic Segmentation with Superpoint Graphs. In
CVPR, 2018. 2

[16] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. PointCNN: Convolution on X-
transformed Points. In NeurIPS, 2018. 2

[17] Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan
Zhao, Hang Zhang, Peizhao Zhang, Peter Vajda, and Diana
Marculescu. Open-vocabulary semantic segmentation with
mask-adapted clip. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7061–7070, 2023. 1

[18] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2023. 3

[19] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3D: Out-of-Context Data Aug-
mentation for 3D Scenes. In International Conference on 3D
Vision (3DV), 2021. 1, 4

[20] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3D: Out-of-Context Data Aug-
mentation for 3D Scenes. 2021. 5, 6

[21] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3d: Out-of-context Data Aug-
mentation for 3D Scenes. 2021. 2

[22] Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik
Park. Fast Point Transformer. In CVPR, 2022. 2

[23] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation. In CVPR, 2017. 2

[24] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In NeurIPS, 2017. 2

[25] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gen-
erative pre-training. 2018. 1

[26] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019. 1

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1

[28] David Rozenberszki, Or Litany, and Angela Dai. Language-
grounded indoor 3d semantic segmentation in the wild. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2022. 4

[29] David Rozenberszki, Or Litany, and Angela Dai. Language-
Grounded Indoor 3D Semantic Segmentation in the Wild. In
ECCV, 2022. 2, 6

[30] Jonas Schult, Francis Engelmann, Alexander Hermans, Or
Litany, Siyu Tang, and Bastian Leibe. Mask3D for 3D Se-
mantic Instance Segmentation. 2023. 2

[31] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal,
Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan,
Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang
Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva,
Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael
Goesele, Steven Lovegrove, and Richard Newcombe. The
Replica dataset: A digital replica of indoor spaces. arXiv,
2019. 2

[32] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. KPConv: Flexible and Deformable Convolution for
Point Clouds. In ICCV, 2019. 2

[33] Silvan Weder, Hermann Blum, Francis Engelmann, and
Marc Pollefeys. LabelMaker: Automatic Semantic Label
Generation from RGB-D Trajectories. In International Con-
ference on 3D Vision (3DV), 2024. 1, 2, 3, 4, 7

[34] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret
Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma,
Denny Zhou, Donald Metzler, et al. Emergent abilities of
large language models. arXiv preprint arXiv:2206.07682,
2022. 1

[35] Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Heng-
shuang Zhao. Point transformer v2: Grouped vector atten-
tion and partition-based pooling. In NeurIPS, 2022. 2, 4

[36] Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xi-
hui Liu, Yu Qiao, Wanli Ouyang, Tong He, and Hengshuang
Zhao. Point transformer v3: Simpler, faster, stronger. In
CVPR, 2024. 1, 2, 4, 5, 6, 7

https://github.com/Pointcept/Pointcept
https://github.com/Pointcept/Pointcept

[37] Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui
Liu, Kaicheng Yu, and Hengshuang Zhao. Towards large-
scale 3d representation learning with multi-dataset point
prompt training. In CVPR, 2024. 2, 4

[38] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
SpiderCNN: Deep Learning on Point Sets with Parameter-
ized Convolutional Filters. In ECCV, 2018. 2

[39] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d
indoor scenes. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2023. 4, 6

[40] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point Transformer. In ICCV, 2021. 2

[41] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,
and Zihan Zhou. Structured3d: A large photo-realistic
dataset for structured 3d modeling. In Proceedings of The
European Conference on Computer Vision (ECCV), 2020. 2,
4

[42] Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha
Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chun-
hua Shen, Yu Qiao, and Wanli Ouyang. Ponderv2: Pave the
way for 3d foundation model with a universal pre-training
paradigm. arXiv preprint arXiv:2310.08586, 2023. 1, 2, 4,
5, 6

	. Introduction
	. Related Works
	. method
	. LabelMaker
	. Improving Labelmaker to make it scale to ARKitScenes baruch2021arkitscenes
	. Scaling beyond existing datasets
	. Results
	. Baselines
	. Datasets and Metrics for Evaluation
	. Experiment Settings
	. Results
	. LabelMakerv2 is generalizing beyond ARKitScenes
	. Limitations & Broader Impact

	. Conclusion
	. Dataset and code download availability
	. Head, common and tail split mIoU scores for ScanNet200
	. Detailed process of applying LabelMaker to ARKitScenes
	. Implementation Details

