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Abstract

This project presents a novel 3D instance segmentation and detection pipeline by fusing 2D
instance segmentations and features into 3D. The pipeline involves 3D scene reconstruction,
2D instance mask extraction and CLIP feature extraction. A novel graph-connecting algo-
rithm is proposed to address the 3D instance label assignment problem based on 2D instance
segmentation. Remarkably, our algorithm achieves finer-grained and more intact segmenta-
tion results compared to an existing method. For semantic class detection, we employ a CLIP
captioning module. In essence, our pipeline serves as a bridge connecting the realms of 2D
and 3D.
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1. Introduction

Significant improvements have been made in the field of computer vision in recent years,
particularly in 3D scene understanding. The ability to accurately segment and detect objects
hold profound implications for many applications, such as robotics, autonomous driving and
augmented reality. One particular challenge in this domain is to fuse information from 2D
into 3D. In this project, we try to apply high-performance 2D computer vision models to 3D
scene understanding tasks, without any training of neural network. Our main contributions
of this project are:

1. We propose a pipeline of 3D instance segmentation and detection by fusing 2D instance
segmentation and dense CLIP features. Instance segmentations are obtained by cluster-
ing voxels into patches and merging them together by our graph-connecting algorithm.
Instance detection is accomplished by Grounded SAM and CLIP embedding captioning.

2. Our graph-connecting algorithm for fusing 2D instances overcomes the weakness of
over-segmentation by PanopticFusion [1], and utilizes 2D instances more efficiently than
PanopticFusion.

3. We provide an open-source realization of TSDF volume with feature fusion.

4. We provide the first open-source implementation for PanopticFusion.

The code is available at https://github.com/quantaji/feature-and-instance-fusion.
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2. Related Works

OpenAI’s CLIP [2] is the inspiration of this project. It employs contrastive learning to
generate a paired feature vector fimg, ftxt for images and text. Images that correspond closely
with the textual description yield higher cosine similarity scores. This is a huge step forward
because of the flexible compositional ability of language.
Our project starts with an aim of building a dense CLIP feature at the per-voxel level

for 3D scenes. Although there are existing work [3] that learns a per-scene 3D dense CLIP
representation, there is currently scarce methods capable of accomplishing this task in an
on-line manner, specifically, the integration of dense 2D CLIP features into 3D scenes.
Substantial studies [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] have been

conducted to address open-vocabulary semantic segmentation using CLIP features. LSeg [20]
employs a straightforward approach, fine-tuning CLIP on pixel-level text-image alignment,
resulting in good results. [4, 13] try to modify the original CLIP architecture to produce
dense output. GroupViT [8] designs a new attention module that cluster pixels into different
semantic classes. [10, 6] also apply a similar idea. [21, 18, 17, 14] try to combine mask
proposal and CLIP together to give a dense feature. [5, 15] goes a step further to add mask
module bypath on CLIP network. [19, 12, 9, 7] utilize multi-modal transformers to tackle
region-text grounding. Nonetheless, these approaches are impractical for us as the textual
input is integrated at an early stage, before the dense feature is generated, so that we cannot
extract a text-independent image feature. Additionally, compatibility with the original CLIP
text encoder is a prerequisite for our pipeline. Having taken all these considerations into
account, we choose LSeg as our dense CLIP feature model.
During the course of this project, a new approach known as ConceptFusion [22] was intro-

duced. Like the aforementioned related works, it leverages a mask generator and the CLIP
model to obtain dense 2D CLIP features. Then this pipeline fuse the features into 3D by
gradslam [23]. We will give an in-depth introduction, analysis on ConceptFusion and compare
it with our approach in Chapter 6.
PanopticFusion [1] is another work that is heavily studied in this project. It aligns closely

with our objective of integrating 2D instance segmentation into 3D. We will give a thorough
introduction to PanopticFusion in Chapter 8 along with a detailed comparison with our
graph-connecting algorithm.
Our pipeline relies heavily on instance segmentation models. Specifically, we use the

Segment-Anything Model (SAM) [24], a highly effective model developed by Meta, which
provides precise and detailed instance segmentation masks. We also use Grounded SAM, an
instance segmentation model that combines of SAM with Grounding DINO [25]. The latter
is a model that generates both the bounding box and tag name for each instance. These two
models play a crucial role in our pipeline.
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3. Main Results

Our pipeline, depicted in Figure 3.1, is designed for 3D instance segmentation and detection
using 2D data. The comprehensive procedure is outlined as follows:

1. 3D Scene Reconstruction: We employ Truncated Signed Distance Function (TSDF)
fusion to build a 3D voxel volume for the scene using depth images.

2. Instance Mask Extraction: For each color image, we use Grounded SAM [25] to
extract instance segmentation masks along with their categories.

3. CLIP Feature Extraction: From each 2D color image, We extract dense CLIP feature
using LSeg [20]. The features are then fused onto TSDF volume in the same way as
fusing RGB channels. This results in a 512-dimensional feature vector for each voxel,
denoted as fclip(x,y,z) for voxel (x, y, z).

4. Random Feature Fusion: Additionally, We fuse a mask-consistent 128-dimensional
random feature onto the TSDF volume. The 2D mask-consistent random feature is
defined as

frand2d(x, y) =
∑
i∈M

1{(x, y) ∈ Maski} × e⃗i, where e⃗i ∼ N (0, I) ∈ R128. (3.1)

The resulting 3D fused random feature is denoted as frand(x,y,z).

5. K-Means Clustering: We apply the K-Means algorithm to all random feature frand(x,y,z)
with K = 1024. This clusters the voxel into patches, which are labeled as Pi.

6. Graph Construction for Instance Segmentation: We construct a graph in which
the nodes are K-means patches. The edges are linked based on the outcomes of graph-
connecting algorithm (See Algorithm 1). Intuitively, this algorithm use previous in-
stance segmentation in step 2 to performs a Bayesian inference to determine whether
two patches are from the same instance. The connected component of the patch graph
is then employed as the 3D instance segmentation solution, with the instance ID defined
as Id(x, y, z).

7. Semantic Information Acquisition: For each 3D instance, we obtain its semantic
information by either (1) decoding a caption from its mean LSeg feature, or (2) counting
the mode category in Grounded SAM masks and use it as the instance’s category.

Figure 3.1(b) provides a partial list of the instances and their semantic information obtained
through our pipeline. Figure 8.1(d) illustrates instance segmentation on additional scenes.
Our pipeline has an open-vocabulary detection capability, allowing detection of instances
beyond a fixed set. Furthermore, it delivers more granular instance segmentation compared
to PanopticFusion [1] (refer to Figure 8.1 for detailed comparisons).
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The subsequent chapters provide detailed discussion on each component within our pipeline.
Chapter 4 analyzes the semantic segmentation ability of LSeg feature. Chapter 5 discusses
decoding category information from LSeg feature using captioning models. In Chapter 6, we
conduct a detailed analysis of ConceptFusion [22], exploring the reasons of its unsuccessful
integration into our pipeline. Chapter 7 discusses our efforts in instance segmentation and
extracting relationships between instances. Chapter 8 provides a comprehensive introduction
to PanopticFusion and how it influenced the development of our graph-connecting algorithm.
Chapter 9 concludes with a discussion.

Algorithm 1 Graph-connecting algorithm for K-Means patches

1: Initialize positive and negative confidence matrix w+(i, j)← 0, w−(i, j)← 0
2: for each frame, access previous generated Grounded SAM instance map Id(x, y), do
3: Find pixel correspondence to the voxel VoxID(x, y).
4: Compute the confidence score for each patch:
5: c1(P ) := Clip(NumVoxel(P )

100 , 0, 1), voxel size criterion,

6: c2(P ) := Clip(NumVoxelInFrame(P )
NumVoxel(P )/3 , 0, 1), voxel percentage criterion,

7: c3(P ) := Clip(NumPixelInMostFreqMask(P )
0.0025×FrameArea , 0, 1), pixel percentage criterion,

8: then the overall confidence is c := c1 × c2 × c3.
9: for Patch pair (Pi, Pj) appears in this frame, and are of the same instance, do

10: w+(i, j)← w+(i, j) + c(Pi)× c(Pj).
11: end for
12: for Patch pair (Pi, Pj) appears in this frame, and are of different instance, do
13: w−(i, j)← w−(i, j) + c(Pi)× c(Pj).
14: end for
15: end for
16: if Patch Pi and Pj are neighbor and log(w+(i,j)

w−(i,j)) > θ1 = 2.0 and w+(i, j) > θ2 = 1.0,
then

17: Build an edge between patch Pi and Pj , otherwise leave blank.
18: end if
19: return the connectivity graph.
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(a) Pipeline

ID Size DeCap Detection Sim 1st freq (%) Sim 2en freq (%) Sim

20 4e5 a wall with the word 0.89 curtain (33.5) 0.92 shower curtain (13.8) 0.78
14 2e5 a floor of a floor of a room 0.90 floor (81.3) 0.89 bag (4.2) 0.72
0 1e5 a couch 0.93 carpet (24.1) 0.88 pillow (16.5) 0.86
65 5e4 a bed 0.96 bed (56.3) 0.99 blanket (7.1) 0.78
80 5e4 the wall of a wall with a lot of other 0.91 tile wall (49.5) 0.84 kitchen (26.7) 0.75
26 5e4 the wall of a wall with a single 0.90 wall (35.0) 0.86 remote (27.2) 0.73
27 4e4 a bicycle 0.97 bicycle (81.1) 0.98 stool (4.7) 0.78
4 4e4 some kind of door 0.93 glass door (25.8) 0.86 shower (25.6) 0.81
40 3e4 a cabinet of the 0.93 shelf (66.1) 0.94 closet entertainment center (6.2) 0.82
128 3e4 a wall with some kind of door 0.89 doorway (19.7) 0.85 bathroom accessory (15.2) 0.85
23 3e4 a curtain 0.97 curtain (63.1) 0.99 ceiling (23.6) 0.76

· · · · · ·

(b) Instance Detection

Figure 3.1.: fig. 3.1(a) shows the whole Pipeline. 1. Fusing depth map into TSDF
volume. 2. Extracting 2D instance segmentation by Grounded SAM. 3. Fus-
ing 2D dense clip feature (LSeg) into 3D. 4. Fusing 2D random mask feature
into 3D. 5. Obtaining sub-instance level patches from K-Means over random
mask feature. 6. Building connectivity graph over patches and connect same
instance patches. 7. Extracting instances’ semantic class using Grounded SAM
masks or decoding from mean LSeg feature. fig. 3.1(b) shows the semantic
information of each instance. Label ID and voxel size are listed as basic
information. We use two methods to get the semantic information of the in-
stance: Decoding averaged LSeg feature of instance with DeCap [26], or using
top frequent words in Grounded SAM masks. The quality of recognition are
evaluated by the cosine similarity between the CLIP text embedding of instance
information and the averaged LSeg feature. For the second methods, the per-
centage of most frequent word is another evaluation of recognition quality as it
represents the purnity of recognition.



4. TSDF Fusion of Dense CLIP Feature

In this chapter, we present a comprehensive examination of the 3D fused Dense CLIP feature.
When fusing features to TSDF volume, we perform an online update, ft+1 =

Wt×ft+wt+1×fnew
Wt+wt+1

.
This operation basically computes the weighted average of all feature vectors projected onto

the given voxel, f3d =
∑

i wifi∑
i wi

. In our implementation, we use the simplest case where wi = 1.

A natural question arises: do these 3D fused CLIP features retain their responsiveness to
CLIP text feature queries as they do in the 2D scenario? We conduct three types of text
queries to address this:

• Multi text query: We compute CLIP text features for multiple text queries, typically
category names. Each queried CLIP feature is then assigned to the most similar text
query. This technique is originally employed in LSeg [20] for generating 2D semantic
segmentation.

• Single text and “other” class query: This involves computing two CLIP text
features. One corresponds to the text to which we desire the CLIP feature to respond,
while the other encodes the text “other”. We use the softmax of cosine product of image
and text feautre to denote similarity score.

• Single text similarity score query: In this case, only one CLIP text feature is
considered. We compute its cosine similarity with the queried CLIP features, and
visualize this score as a heat map. This query method is used by ConceptFusion [22].

Multi text query. This query type is particularly suited for semantic segmentation within
a predefined set. Figure 4.1(d) illustrates the segmentation based on the NYU40 scheme along
with its Intersection over Union (IoU) ratio. The obtained results demonstrate the efficacy of
the 3D fused features, as they provide segmentation boundaries that are reasonably accurate.
However, it is worth noting that they still fall short in comparison to state-of-the-art 3D-based
learned segmentation models.
Single text and “other” class query. In Appendix A, a comprehensive examination of

various query types is presented, encompassing noun phrases, verb phrases, adjectives, logical
combinations, differing scopes (e.g., broader: “living room”, narrower: “specific object com-
ponent”), relative positions, and implicit inferential text. The findings demonstrate that our
CLIP features accurately respond to nouns, verbs, and adjectives, in which cases the seman-
tic interpretation is most straightforward. However, when subjected to logical combinations,
scopes, or relative positions, CLIP features yield responses that are entirely inaccurate. The
heat map visualization shows that CLIP features exclusively response to nouns, verbs, and
adjectives within the queried sentences, but remain ignorant of the overall semantic combina-
tion. This outcome is in expectation, given that CLIP is not trained with object grounding,
and is also revealed in previous work [27]. Nonetheless, the absence of awareness of relative
position impedes us from progressing beyond the knowledge of object existence to compre-
hending their interrelationships. As we can see in Chapter 7, even for 2D images this is a
challenging task in the present state of research.
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(d) Semantic Segmentation (NYU40)

cls IoU3d IoU2d

unknown 7.68 0.00
wall 62.62 66.55
chair 0.00 0.00
books 0.00 0.00
floor 57.10 61.54
door 28.73 22.67

otherprop 0.00 0.00
window 54.77 46.20
table 17.77 16.36

otherfurniture 0.00 0.00
pillow 0.00 0.00
picture 0.00 0.00
ceiling 73.86 86.85
box 0.00 0.00

cabinet 45.35 40.47
desk 0.00 0.00

shelves 2.01 3.31
towel 0.00 0.00
sofa 79.51 76.32
sink 35.96 25.97
lamp 0.00 0.00
bed 61.72 72.00

bookshelf 0.00 0.00
mirror 15.85 8.73
curtain 59.19 60.90

whiteboard 0.00 0.00
toilet 39.16 35.93
bag 0.00 0.00

clothes 0.00 0.00
night stand 0.00 0.00
television 37.14 41.13
dresser 0.00 0.00

refridgerator 69.22 79.79
shower curtain 0.00 0.00

bathtub 0.00 0.00
counter 25.51 31.92

otherstructure 0.00 0.00
floor mat 0.00 0.00
paper 0.00 0.00
person 0.00 0.00
blinds 0.00 0.00

(e) IoU

Figure 4.1.: Left: Semantic segmentation using LSeg dense feature. Voxels are assigned
to semantic class with highest text-image similarity. Right Intersection over
Union (IoU) ratio with respect to (1) ground truth 3D segmentation using
meshes provided by ScanNet, (2) Voxel segmentation obtained by fusing 2D
ground truth semantic segmentation.
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Figure 4.2.: Cosine similarity between LSeg features and embedding of query text, “The
door is near the refrigerator.” This figure shows single vector query gives non
localized heatmap, and therefore, cannot be used as reliable localization tools.

Single text similarity score query. The efficacy of a single text and “other” class query
in yielding localized and reasonable responses rise the question whether a single vector is
sufficient to achieve comparable outcomes. The answer is negative. As depicted in Figure 4.2,
although the desired objects are visually delineated in red within the scene, the process of
thresholding for localizing these objects is contingent on specific cases. The similarity score
of a single vector shows continuous variations across voxels and fails to yield an obvious
localization boundary unless subjected to manual thresholding.
CLIP features enable image features to response to arbitrary text query, making open-

vocabulary detection promising. However, the querying methods outlined above still require
a pre-defined set of text, making the query pseudo-open-vocabulary. Hence, in the next
chapter, we will employ CLIP feature captioning as a strategy to circumvent the need for a
fixed predefined text query, in order to achieve true open-vocabulary detection.



5. CLIP Feature Captioning

In this chapter, we aim to validate the idea of extracting open-vocabulary class information
using CLIP feature captioning model.
While there are many captioning models conditioning on CLIP feature as input, we need two

additional requirements to integrate them into our pipeline: (1) The model must be trained on
normalized CLIP feature. Our feature fusion pipeline require the features to be normalized,
in order to prevent unpredictable weight factor. (2) The model must be compatible with
the ViT-B-32 version of OpenAI’s CLIP, which gives a 512 dimensional feature vector and
also forms the basis of LSeg model. Alternative CLIP-like models such as [28] may not
align effectively with LSeg features and caption models trained with these clip models should
therefore be avoided.
We find DeCap [26] and ClipCap [29] meet our requirements. It is noteworthy that ClipCap

performs well in generating captions on the original CLIP features, whereas DeCap works
better in captioning LSeg features. Consequently, we choose to ClipCap for original CLIP
features, and DeCap for LSeg features.

: a table 

: a blanket 

Figure 5.1.: An example of captioning from dense CLIP feature (LSeg). The words a
table and a blanket are output of DeCap, given masked-averaged or single pixel
feature as input.

5.1. Captions of Linear Combination of Features

Figure 5.1 shows an example of captioning LSeg feature. DeCap successfully decode the
semantic class table and blanket (albeit with a slight deviation). However, we need to further
investigate whether captioning ability still remains after line combination, since our 3D fused
feature is also a linear combination.
In fig. 5.2, we present examples of linearly combining three vectors, each representing

distinct semantic meanings. Although the decoded text does not perfectly indicate the original
semantic meaning, at least we observe elements of the semantic class in the text. In practical
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5.2 Caption on 3D Fused LSeg Feature 10

A B C

Decoding:
A: A wooden table with a wooden table cloth on top of it.
B: A black coffee mug sitting on top of a table. 
C: A laptop computer with a blue screen on it.

(A+B)/2 : A wooden table with a cupboard and a black and white clock. (✕)
(B+C)/2: A black coffee cup sitting on top of a desk. (✓)
(C+A)/2 : A laptop computer sitting on top of a wooden table. (✓)

(A+B+C)/3: A computer mouse sitting on top of a wooden table. (?)
(A+B+2C)/4: A computer mouse sitting on top of a desk. (?)

Figure 5.2.: This figure shows the captions generated by ClipCap. This is a proof of concept,
since the 3D CLIP feature are linear combinations of various 2D clip features.

case, we expect the fusion of LSeg features within a voxel to be more consistent than this test
case, as we shall see in the next section.

5.2. Caption on 3D Fused LSeg Feature

Table 5.1 illustrates generated for LSeg features using DeCap. For the majority of semantic
classes, the decoded text matches or provides synonyms for the ground truth class. This
is a demonstration of the model’s the open-vocabulary detection ability. Interestingly, we
encountered instances such as the ceiling of a lot of ceiling or the wall of a wall with a
lot of other, where the text, although grammatically incorrect, effectively reflects its origin
from a combination of CLIP features. Moreover, in cases where the ground truth class lacks
specificity, for instance, otherstructure, the decoded text gives some kind of door, which is also
ambiguous. This could be attributed to the fusion of feature vectors from various semantic
classes.
The table also includes caption of ConceptFusion features, which completely fails to convey

the semantic information. We will give an in depth discussion on why it fails in the next
chapter.

5.3. Attempts to Extract Positional Relationships

Even though CLIP features may not accurately respond to relative position queries, as we
discussed in Chapter 4, we still want to try if captioning can provide some insights. In
Figure 5.3,, we manually establish semantic relationships, such as apple on the chair or mark
cup on/under the table. However, the generated captions either neglect the objects or fail to
convey the correct positional relationships. Therefore, captioning from CLIP feature is also
not the approach to acquiring relationship information.



5.3 Attempts to Extract Positional Relationships 11

Class Size LSeg Avg
Cap

LSeg Ran-
dom Cap

ConceptFusion Random Cap ConceptFusion Random Cap

wall 2e5 the wall of a
wall with a lot
of other

wall with the
side of a wall
, one of the
other

picture of a dark - haired woman ’s lap
top and door in the corner

blurry photograph of small cat in dark
room with tie and remote

floor 2e5 a floor of a
room with the
floor

a floor of a
room of the
floor

blurry photograph of a persons dog ’s
lap top and remote

blurry photograph of a person ’s beard
and his baby cat in dark jacket

cabinet 2e5 a cabinet with
the top

a television picture of a dark - haired woman ’s lap
top and tie at home

picture of dark - haired person ’s lap
top , in dark room

curtain 9e4 a curtain a curtain blurry photograph of man ’s hair in
dark room

blurry photograph of man in dark suit
and tie laying in television

otherprop 7e4 a back of a a wall of a
person

picture of a dark haired person ’s hair
with glass collar in corner

blurry photograph of person ’s hair
with his lap top and beard lying in the
dark sky

sofa 7e4 a couch a couch blurry photograph of a person ’s lap
top and baby dog in the dark room

a dark haired cat ’s couch in living
room area

shelves 5e4 a cabinet with
the top

a shelf that
has been used

picture of woman in dark suit and tan
striped tie at home

picture of woman in suit and tie at
dark room

table 5e4 a wall a table blurry photograph of a person ’s lap
top and tan dog in window

black and white photograph of person
’s hair with his head

unknown 5e4 a back of a a table picture of a dark haired person ’s hair
in dark suit and tie at home

blurry photograph of a person ’s lap
top and brown dog ’s lap top

bed 4e4 a bed a bed blurry photograph of a person ’s lap
top and baby dog in bed

this black cat ’s hand ’s bed with her
hair and suitcase in the corner

ceiling 3e4 the ceiling of
a lot of ceiling

ceiling that is
hanging in the
ceiling

picture of dark colored cat in ocean ’s
hand at night

picture of

desk 3e4 a table a floor of a ta-
ble

picture of a woman with dark hair in
hand and striped tie at night

picture of person in dark colored tie at
night with

otherstructure 2e4 some kind of
door

some kind of
door

picture of a dark colored cat in ocean
with his arm out at night

picture of small tan cat with eyes
closed in dark room

refridgerator 2e4 a refrigerator a refrigerator picture of a woman ’s lap top and tan
- - fashioned door at night

blurry photograph of person in dark
colored suit and tie in window

door 2e4 some kind of
door

some kind of
door that is
door

picture of a dark - haired woman ’s lap
top and door in the corner

blurry photograph of a person in dark
suit and tie

television 2e4 a tv a tv picture of a dark - haired woman ’s tie
at night with the door of the sky

picture of a dark - haired woman ’s tie
at night with the word [messy text]

otherfurniture 8e3 a toilet a toilet picture of a female male with dark hair
dryer in corner of the window

picture of a female ’s hair with a white
tank top new

window 8e3 window of
open

window of
open

blurry photograph of person in dark
blue sky at home

blurry photograph of person in dark
blue sky at home

toilet 6e3 a toilet a toilet picture of a female male dog ’s lap top
in dark room

picture of male cat in small bathroom
with leather tie and seat [messy text]

sink 5e3 a toilet a sink picture of a woman with dark hair in
hand and striped sky

picture of a woman in dark colored
suit and gold long

night stand 5e3 a table with
the bottom

table with the
top

picture of a male cat with dark hair in
hand and tie at night

picture of a woman with dark hair and
tie at small [messy text]

counter 4e3 a counter a sink picture of a woman ’s hair with baby
eyes in dark colored cabinet

blurry photograph of person ’s dog in
dark blue and leather suit case

pillow 3e3 a bed a person with
it

blurry photograph of a person ’s hair
with his lap top and black dog in the
window

blurry photograph of person ’s hair
with his neck tie in dark sky

mirror 2e3 a few mirror
of some sort

a few mirror
that is by

picture of male cat in dark suit and tie
at tennis ball in corner of room

blurry photograph of person in dark
suit and tie at television

Table 5.1.: This table shows the caption generated by DeCap given a CLIP feature from
a specific semantic class. Avg means the feature is averaged over all features
of this semantic class, whereas random means a random samples of the given
class.
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Decoding:
(1): A chair sitting on top of a wooden floor.
(2): A wooden table with a cupboard and a wooden tablecloth. 
(3): A wooden table with a wooden table cloth on top of it.
(4): A wooden table with a laptop computer on top of it.

(1) (2) (3) (4)

Figure 5.3.: These examples shows caption results of ClipCap given same set of objects but
different relative positions. CLIP features do not reveal much about relative
position information.



6. ConceptFusion Feature Analysis

In this chapter, we address ConceptFusion, a work closely related to our project. We aim to
assess its compatibility with our findings and its potential integration into our pipeline. Our
evaluation includes an introduction to ConceptFusion, followed by a section of our replicated
results on the 3D fused ConceptFusion feature. However, our findings show a disparity with
the claimed effectiveness. Finally, we provide a detailed analysis of the reasons for Concept-
Fusion’s shortcomings.

6.1. Introduction to ConceptFusion Feature

The ConceptFusion pipeline first prduce a 2D dense CLIP feature. It aims to avoid the
disaggregation in semantics. This means that the feature of each pixel should contain both
its individual semantic meaning and the global semantics (i.e., the objects surrounding the
pixels). Therefore, ConceptFusion not only extract the global CLIP feature vector fG but
also local CLIP features {fL

i }Ni=1.
Segment-Anything-Model (SAM) [24] is used to obtain fine-grained instance segmentation

masks and bounding box. Then the local features are obtained by passing cropped image to
CLIP, fL

i = CLIP(Crop(Image,BBoxi)).
For each SAM mask, the regional feature fR

i is a weighted combination,

fR
i = wif

G + (1− wi)f
L
i , (6.1)

where the weight is the softmax of cosine similarity,

wi =
exp

(
CosSim(fL

i , f
G)/τ

)∑
j exp

(
CosSim(fL

j , f
G)/τ

) , where τ = 1. (6.2)

Then the final dense CLIP feature is a linear combination of all the mask feature

fConceptFusion2D(x, y) =
N∑
i=1

1{(x, y) ∈ Maski} × fR
i . (6.3)

After obtaining the 2D feature, ConceptFusion employs gradslam [23] to fuse the features
into 3D. Unlike TSDF fusion, gradslam use point clouds as 3D representation, dynamically
updating the position, normals, and features of points, or adding new points to the point
clouds.
We will show the results of fusing real scene in next section.

6.2. ConceptFusion on 3D Scene

During our implementation, we observed that gradslam has a high demand for GPU memory.
Even with a Tesla A100 80G GPU, it couldn’t accommodate a resized 2D feature of 240×320

13
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This is because the point cloud density in gradslam increases with the feature’s resolution,
which is not an issue in TSDF fusion. After some GPU-memory-saving adjustments, we
successfully run gradslam on a Tesla V100 32G GPU with resolution of 120× 160.

Figure 6.1.: Initial Results of ConceptFusion. Top left: Point clouds with RGB col-
ors obtained from gradslam. Scannet scene0011 00 is used for fair comparison
with original paper. Top right: 3D ConceptFusion feature fused by gradslam,
queried by NYU40 class labels, and colored according to NYU40 rules. The
messy scattering points are caused by gradslam’s instability when input fea-
ture is near zero. Bottom left: 3D ConceptFusion feature fused by TSDF
integration, queried by NYU40 class labels, and colored according to NYU40
rules. The whole wall is recognized as television. This figure proves the seman-
tic leakage weakness of ConceptFusion. Bottom right: 3D LSeg feature fused
by TSDF integration, queried by NYU40 class labels, and colored according to
NYU40 rules.

Figure 6.1 illustrates the semantic segmentation results of ConceptFusion features fused by
both gradslam and TSDF fusion. The point cloud generated by gradslam exhibits notable
noise, leading to apparent contamination in its semantic segmentation. Further, we found the
features in these points usually have near infinity norm. After switching to TSDF fusion, the
result gets better, although the segmentation defects are still very obvious. These defects can
be summarized as “semantic leak”. For instance, an entire wall is misclassified as television,
or the chairs near the table are misclassified as table. Overall, the semantic segmentation
performance for ConceptFusion is far worse than LSeg feature.
We then experiment with single vector similarity score query on ConceptFusion features

(Figure 6.2), same as Fig. 7 in the ConceptFusion paper. Following the paper’s methodology,
we applied a threshold on similarity scores, highlighting only points with scores above this
threshold. However, we did not get a well-localized heatmap. This is in expectation because
the optimal threshold varies depending on the specific case.
Additionally, we attempted captioning using ConceptFusion features. However, caption

results, as presented in Table 5.1, are completely unrelated. Keywords such as “blurry” or
“picture of...” shows up frequently, suggesting a lack of meaningful captions.
In conclusion, ConceptFusion’s performance fell below our initial expectations. As a result,

integrating it into our pipeline does not appear to be a viable option. The following section
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OpenSeg + 3D Fusion

ConceptFusion + gradslam

Our reproduced ConceptFusion + TSDF fusion

Text 
Queries:

There are two ovens under
the kitchen counter. The 
counter is directly beneath a 
window, adjoining the wall to
which a television is mounted.

A stainless steel refrigerator by the
dining table and the kitchen counter. 
The refrigerator is just beside the
kitchen sink.

Television.

Figure 6.2.: Comparison of single vector query of ConceptFusion feature from original paper
and our reproduced results. The highlighted area in this heatmap depends
heavily on thresholding of similarity score. Therefore, localization of heatmap
is not instinct in ConceptFusion. The figures from second and third rows are
from the original ConceptFusion paper.
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will provide a detailed discussion of the aforementioned problems.

6.3. Analysis of Failure of ConceptFusion

In our analysis, we refer to the image on the left of Figure 6.3 as a representative example.

Figure 6.3.: This right figure shows the hollow area (black) of 2D ConceptFusion feature.
The zero norm feature in these areas leads to instability in gradslam point
fusion.

We observed that SAM fails to cover the entire image. The right of Figure 6.3 shows the
hollow region overlooked by SAM, leading to feature vectors with zero norms in these pixels.
We attribute the presence of noisy feature points in gradslam to these zero-norm features, as
they are likely to cause division-by-zero during fusion. After substituting them with random
Gaussian vector, the noisy points disappear.
Furthermore, we identified that “semantic leak” phenomenon arise from the semantic im-

purity of local feature. For instance, while SAM accurately detects the background in the
sample image, the cropped background image inevitably includes objects such as the sauce
bottle, the paper bag, and the cola cup, due to the non-convex shape of the background.
Consequently, the local CLIP feature also contains semantics of nearby objects. Therefore,
when queried with the leaked objects, the background is highlighted (Figure 6.4 upper left
provides an example).
Another potential source of “semantic leak” originates from the global CLIP feature. It

is worth noting that the cosine similarity between CLIP image features typically falls within
the range of [0.3, 1.0]. If a high temperature is used, for instance τ = 1 in our case, the global
weight wi may not exhibit significant variability. In such cases, wi ≈ 1

N , where N denotes the
number of instance masks. Consequently, each non-zero ConceptFusion feature will have a
roughly equal amount of global feature, making them similarly responsive to any text query.
We come up with an enhanced version of ConceptFusion that addresses the above two

issue: (1) discarding global feature, and (2) weakening or blocking the background during
local feature computation. The latter step aims to avoid the leak of neighboring objects’
semantics into local feature. Nevertheless, in some extreme cases, some degree of semantic
leakage may still occur based on the silhouette of the background. The bottom two figures of
Figure 6.4 illustrate that our improved iteration of ConceptFusion gives precise and localized
response to target text query. As our pipeline ultimately relies on fused CLIP for captioning,
an aspect in which ConceptFusion is not good at, we choose not to present the fusion results
for the improved version of ConceptFusion.
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Figure 6.4.: 2D Analysis of ConceptFusion. The two figures on the left are query
with there is a paper bag left to a cup of cocacola and it is right to a yellow
bottle of sause, and the right two are queried with tablecloth. The upper two
figures use original ConceptFusion feature, where semantic leak leads to non-
localized highlighted area, whereas our enhanced version of ConceptFusion does
not suffer semantic leak (the lower two figures).
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A potential explanation for ConceptFusion’s lower classification performance could lie in
the fact that LSeg undergoes fine-tuning on image segmentation data utilizing a contrastive
loss. Despite potential issues with catastrophic forgetting, LSeg demonstrates enhanced dis-
crimination capabilities, particularly for objects that are more likely to coexist within a given
scene.

a coffee mug with 
dark colored 
condiments sits in 
the background 

a coffee mug with 
dark colored coffee 
mug for sale 

a black coffee mug 
with condiments in 
the background 

blurry photograph 
of coffee mug with 
coffee 

blurry photograph 
of coffee mug with 
a striped 
background

blurry image of 
coffee mug with 
striped word " 

blurry image of 
coffee mug with a 
person in 
background 

black photograph of 
cat with person 's 
eyes coming out of 
window 

800 x 800 400 x 400 200 x 200 100 x 100 50 x 50 25 x 25 13 x 13 6 x 6

Figure 6.5.: We use caption as a probe of CLIP feature quality. Low resolution figures’ CLIP
feature gives inconsistent captions with the high resolution ones. ConceptFusion
may suffer from low quality CLIP features as it use small segmentations from
SAM.

The diminished captioning quality of ConceptFusion features may originate from SAM’s
tendency to segment the image into the smallest possible parts. This results in low-resolution
cropped images when computing local features. Experiment illustrated in Figure 6.5 shows
that down-sampling image leads to degradation in captioning quality and introduce keywords
such as blurry image and photograph of. This explains the unrelated text appear in Concept-
Fusion captions. Intriguingly, we observed that stretching the image to an extreme aspect
ratio does not lead to a decline in caption quality.
We have concluded our finding on ineffectiveness of ConceptFusion, and provided analysis

on the reasons. In the next chapter, we will state our initial idea on building the detection
pipeline.



7. Attempts on Information Extraction

This chapter functions as an intermediary, dedicated to documenting shifts in ideas.

7.1. Attempt to Extract Relations with Visual Language Model

In the middle stage of our project, we set an ambitious goal: not only to detect instances in
an open-vocabulary manner, but also to construct a scene graph, which involves extracting
potential relationships between these instances. Initially, we considered querying 2D images
using a fixed set of relationships. However, after researching state-of-the-art models in visual
question answering (VQA), we discovered that, at the present time, this remains a highly
challenging task. In Figure 7.1, we provide an example of BLIP-2, a well-known visual
language model in VQA. It consistently provides incorrect answers to every question. It’s
possible that the model requires fine-tuning, or that we didn’t use the appropriate prompt.
Nevertheless, these findings led us to redirect our focus from relationship extraction to instance
segmentation.

- [Question] proposition: "the apple is on the chair", 
answer yes if this statement is true, no if it is false
or unreasonable.
- [Answer] yes
- [Question] proposition: "the apple is under the chair", 
answer yes if this statement is true, no if it is false
or unreasonable.
- [Answer] yes.
- [Question] proposition: "there are no apple nor chair
in this image.", answer yes if this statement is true, 
no if it is false or unreasonable.
- [Answer] yes..

Figure 7.1.: An example of question answering using BLIP-2. It shows that current
visual language model is not capable of accurate relation extraction.

7.2. Attempt of Instance Segmentation

Performing instance segmentation based on LSeg or ConceptFusion features is a challenging,
even impossible task. This is due to the possible occurrence of distant objects sharing similar
semantic classes. Consequently, clustering on semantics related features, makes it impossible
to distinguish between features of these objects. Figure 7.2 shows the K-Means clusters
(K = 1024) on LSeg and ConceptFusion features. We can see that the paintings on the wall
share same labels even if they are spatially separated.
Therefore, we need a semantics agnostic but instance sensitive feature. Our solution is

mask-consitent random feature. For each 2D frame, we extract its instance segmentation

19
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(a) LSeg (b) ConceptFusion (c) Random SAM (d) Random Grounded

SAM

Figure 7.2.: K-Means cluster coloring of different features (LSeg, ConceptFusion, Random
SAM, Random Grounded SAM).

masks {Maski}Mi=1 using SAM. Then we use a random gaussian vector e⃗i ∼ N (0, I) ∈ R128 as
the unique “identity vector” for this mask, and “color” it to all the pixels belonging to this
mask. This gives a dense random feature, defined as,

frand2d(x, y) =
∑
i∈M

1{(x, y) ∈ Maski} × e⃗i, where e⃗i ∼ N (0, I) ∈ R128. (7.1)

The choice of a 128-dimensional vector balances vector uniqueness and computational effi-
ciency.
After fusing this random features into 3D and applying K-Means clustering, we found that

the voxels are clustered into sub-instance level patches (Figure 7.2). Notably, the boundaries
of these patches align well with actual instance segmentation boundaries. While these patchs
may not be perfectly instance level, it provides a good starting point.
During our project, a new model called Grounded SAM [25] was introduced. It not only

provides fewer, better and more efficient instance segmentation compared to SAM, but also
assigns open-vocabulary tags to each object. We also provide the K-Means of Grounded
SAM’s random feature in Figure 7.2. As we will see in the next chapter, Grounded SAM is
heavily integrated into our pipeline.



8. PanopticFusion and Graph-Connecting
Algorithm

Up to this point, we have demonstrated the ability of our pipeline in extracting semantic
information. The current challenge lies in extracting instances. This chapter begins with
an introduction to an influential work to our pipeline: PanopticFusion. This work is about
integrating 2D instance segmentation into 3D. Then we will present our replicated results
of PanopticFusion and analyze its limitations. Finally, we will introduce how we solve these
limitations with our graph-connecting algorithm.

8.1. Introduction to PanopticFusion

Fusing instance segmentation into 3D involves finding an optimal labeling for all voxels, that
minimizes conflicts with 2D segmentations. This is computationally challenging due to the
large number of voxels in a scene (often in the millions), each potentially having plenty possible
labels (up to the number of instances in all 2D frames).
PanopticFusion tackles this problem with a greedy approach. Here we will introduce the

general idea of PanopticFusion, omitting the cumbersome mathematical derivations. Panop-
ticFusion maintains a list of 3D instance IDs from observed 2D frames and assigns each voxel
an ID from this list. When a new frame is introduced, its 2D mask is either matched to
an existing 3D instance ID or recognized as a new instance, which is then added to the 3D
instance list. To save computation, PanopticFusion retains the most probable instance ID for
each voxel, along with a confidence weight. Once this 2D-3D instance matching for a new
frame is completed, we increase confidence weight if the new instance ID matches the old
one, or decrease it if not. The procedures above represent the basic version of PanopticFusion
pipeline. The authors also propose adding Conditional Random Field (CRF) layer to improve
accuracy. However, this requires neural network training, and this aspect falls beyond the
scope of our current discussion.
Figure 8.1 displays the instance segmentation results of PanopticFusion, employing Mask-

RCNN, Grounded SAM, or ground truth as the mask generator. PanopticFusion with Grounded
SAM or ground truth masks gives very impressive results with clear segmentation boundary.
For a fair comparison, we also try to replicate the results from original paper, where they
use a Mask-RCNN model fine-tuned on ScanNet. However, due to unavailability of their
source code and a lack of comprehensive training methodology, reproducing their results is
unfeasible. The Mask-RCNN used to produce results in Figure 8.1 is based on ResNet101
and FPN, it is pretrained on MS COCO dataset without fine-tuning. This disparity explains
the relatively inferior segmentation performance observed in the figure.
Despite the impressive results of PanopticFusion, we find some evident problems:

• Inefficient data usage due to duplicate IDs: PanopticFusion encounters inefficien-
cies in instance assignment due to its use of a fixed IoU threshold for 2D-3D matching.
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(a) Color

(b) PanopticFusion with MS-COCO pretrained Mask-RCNN instance segmentation.

(c) PanopticFusion with Grounded SAM instance segmentation.

(d) Graph Connecting Instance segmentation using Grounded SAM masks (Ours)

(e) PanopticFusion guided with graph-connect instance segmentation (Ours)

(f) PanopticFusion with 2D ground truth instance segmentation.

Figure 8.1.: Instance segmentation results using PanopticFusion with various 2D masks and
our graph-connect algorithm. Scannet scenes scene0000 00, scene0488 01,
scene0643 00 and scene0645 01 are used for fail Comparison with the original
PanopticFusion paper. See here for more views. Guided PanopticFusion is a
post-processing step after graph-connecting algorithm. It uses graph-connecting
algorithm’s 3D segmentation label as guidance in 2D-3D matching. However,
it does not lead to better results.

https://github.com/quantaji/feature-and-instance-fusion/tree/main/figures/05_panoptic_fusion
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This one-size-fits-all rule results in the assignment of duplicate instance IDs to objects
that should be represented as a single entity. Consequently, unnecessary competition
arises among these duplicates, leading to suboptimal data utilization. For instance, in
scene0000_00, PanopticFusion erroneously identifies around 10,000 3D instances, while
the accurate count should be closer to a hundred.

• Path-dependent Nature: The 3D instance ID list used in PanopticFusion depends
on the history frames, and this may lead to extra instance competition. An illustrative
example is observed in scene0000_00 with ground truth segmentations (bottom left of
Figure 8.1). Here, the curtain is bifurcated into red and green segments. This division
arises from the scanner’s trajectory, which captures the left part in the initial frames
and the right part in the latter frames. Consequently, PanopticFusion assigns separate
instance IDs to these segments and there is no chance these parts can merge by the
algorithm. The division depicted in the figure is a consequence of this type of instance
competition.

• Preference for Larger Segmentations: In certain scenarios, mask generator pro-
duces multiple levels of segmentation (e.g., an entire bookshelf versus individual books
on the shelf). In the 2D-3D matching stage of PanopticFusion, matching of 2D masks are
ordered descending by their area. Additionally, large 3D instance tend to have higher
IoU, making them more likely to be selected during matching. Therefore, Panoptic-
Fusion can potentially downgrade segmentation details. This becomes apparent when
compared to our graph-connecting algorithm.

8.2. Graph-connecting Algorithm

PanopticFusion addresses computational complexity by a greedy assignment method. We
achieve this by narrowing the optimization domain from voxels to K-Means patches. In
Section 7.2, we observe that K-Means patches is at the sub-instance level and align their
boundaries well with actual segmentation boundaries. This reduces the task to merging
patches belonging to the same instance. A natural step next is to build a K nodes graph
denoting each patches and establish edges between patches likely to be in the same segment.
This idea leads us to make a statistics about whether two patches are consistently recognized

in same segments across all frames. However, there remain practical challenges in algorithm
design, stated as follows:
The first problem is that the mask generator may produce multiple levels of segmen-

tation, causing two patches to belong to the same segment in certain frames but differ-
ent segments in others. Thus, a good solution is to keep both positive evidence counts
w+(i, j) =

∑
f∈all frames c+,f (i, j) where patches pair (Pi, Pj) are of the same segment, and

negative evidence counts w−(i, j) =
∑

f∈all frames c−,f (i, j) denoting that patches are of dif-
ferent segments. In the end, we preserve edges where positive evidence surpasses negative

evidence, i.e., log
(
w+(i,j)
w−(i,j)

)
> θ1. We additionally put a constraint on the absolute value of

positive evidencew+(i, j) > θ2, to prevent cases where there are no negative evidence for pair
(Pi, Pj) but an accidental positive evidence.
Another concern arises from the potential misassignment of unrelated patches to a specific

2D instance in some frames. To mitigate this, we apply a confidence score c+/−,f (i, j) to per-
frame evidence. For each voxel patch, we define three types of confidence c1(Pi), c2(Pi), c3(Pi)
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based on (1) patch’s absolute voxel size, (2) the proportion of patch’s voxel that appears in cur-
rent frame, and (3) number pixels occupied by this patch in current frame. c1(Pi), c2(Pi), c3(Pi)
are thresholded functions of these three factors. Finally, the per-frame edge evidence is
c+/−,f (i, j) = c1(Pi)× c2(Pi)× c3(Pi)× c1(Pj)× c2(Pj)× c3(Pj).
We summarize the above discussion into our graph-connecting algorithm, as depicted in

Algorithm 1. The final instance IDs are determined by the connected components of the
graph.
This algorithm addresses all three issues in PanopticFusion. Firstly, it inherently avoids

generating duplicate instances. Secondly, the evidence are the accumulation of per-frame

evidence, making the algorithm path-independent. Third, our edge criterion log
(
w+(i,j)
w−(i,j)

)
>

θ1 (θ1 = 2 in our implementation) imposes a strict condition on merging two patches. This
effectively prevents the merging of instances into higher abstraction levels. Therefore, as
shown in Figure 8.1, our algorithm produces finely detailed yet intact segmentations compared
with PanopticFusion.



9. Discussion

In this section, we’ll address the potential limitations of our pipeline.
Firstly, our pipeline exhibits slower processing times (refer to Table 9.1) and lacks the

capability for online execution due to the requirement of complete frame data for K-Means
processing. Consequently, real-time execution is not possible. This stands as a notable
drawback when compared to the PanopticFusion.

Stage Seconds per Frame

TSDF Fusion 0.05
LSeg Feature Fusion 0.16

Grounded SAM Mask Extraction 0.62
Random Feature Fusion 0.18

Graph Building 0.33

total 1.34

ConceptFusion (unused) 5.27
GradSLAM (unused) 0.40

PanopticFusion (unused) 0.23

Table 9.1.: Processing time for each stage of our pipeline

Secondly, there are potential improvements to be made in our pipeline. While K-Means
provides localized and mask-sensitive patches, localization is probabilistic and not guaranteed.
Patches can sometimes contain distance outlier. Consequently, we may accidentally merge
two patches that are distant in space (see Figure 9.1 for an example). Furthermore, in the
graph-connecting algorithm, we employ a fixed threshold for edge pruning. This may not
be suitable for cases where the observation over each object in a scene is highly imbalanced.
Therefore, a better solution approach would be to implement a graph neural network (GNN)
to handle the graph connecting task at greater precision.
Finally, we posit that our pipeline serves as a proficient bridge from 2D to 3D. We harness

high-performing models in 2D to fulfill tasks in 3D. However, we hold the belief that the
optimal solution for these tasks will ultimately be 3D-centric.
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Figure 9.1.: A failure case where our graph-connecting algorithm merge distance patches
together.



10. Conclusion

In this project, we propose a novel 3D detection pipeline. It capitalizes on high-performing
2D models for instance segmentation and employs dense CLIP feature extraction, seamlessly
integrating them into the 3D domain. The graph-connecting algorithm in our pipeline yields
more precise and comprehensive instance segmentation compared to prior approaches. Ad-
ditionally, the incorporation of a captioning module enables us to perform open-vocabulary
object detection. We believe our work will offer valuable insights for future research in 3D
scene understanding.
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A. LSeg feature single word and “other” class
query

The following figures show how well aligned the LSeg figure is with respect to the given text
query, or to the “other” text query. The score is processed with softmax and a temperature
of 0.03.
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(a) Floor (b) Refrigerator (c) Sink (d) Sofa (e) Wall

(f) Window (g) Bed (h) Cabinet (i) Counter (j) Curtain

(k) Door (l) Chair
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Figure A.1.: LSeg single class and ‘other’ class query: Noun.

(a) Living room (b) Bathroom (c) Legs of chair

Figure A.2.: LSeg single class and ‘other’ class query: Bigger or smaller scope.
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(a) Front panel of
fridge

(b) Middle of the
bed

(c) Edge of sofa (d) Backpack on the
bed

(e) Left of chairs

(f) Middle between
bed and sofa

Figure A.3.: LSeg single class and ‘other’ class query: Relative Position.

(a) Sit (b) Sleep (c) Brush teeth (d) Ride (e) Read

(f) Travel

Figure A.4.: LSeg single class and ‘other’ class query: Verb.
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(a) Warm (b) Cold (c) Soft (d) Metal (e) Can be burned

(f) Can be closed (g) Can be closed or
opened

(h) Can be used

Figure A.5.: LSeg single class and ‘other’ class query: Adjective.

(a) Food (b) Cold food inside (c) Place for cooking (d) Place for sleep-
ing

(e) Sleeping

Figure A.6.: LSeg single class and ‘other’ class query: Indirect words, implicit inference.

(a) Bed and sofa (b) Toilet and cur-
tain

(c) Not on the floor (d) Toilet but not
sink

Figure A.7.: LSeg single class and ‘other’ class query: Logical combination.
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