
FoRL Spring 2023 Project Report: Adaptive
Mechanism Design in Sequential Social Dilemmas

Guangda Ji
guanji@student.ethz.ch

Minxuan Qin
minqin@student.ethz.ch

Xuanang Lei
xualei@student.ethz.ch

Project TA: Vinzenz Thoma

Abstract

Social dilemmas are a type of multi-agent reinforcement learning (MARL) environ-
ment wherein agents face a difficult choice between acting in their self-interest or
cooperating. Understanding social dilemmas is crucial as it offers valuable insights
into the design of mechanisms for real-world scenarios. Adaptive mechanism design
(AMD) is a MARL algorithm that has exhibited success in promoting cooperation
within simple matrix games. This study aims to investigate the effectiveness of
AMD in more complex games known as sequential social dilemmas (SSDs). SSDs
simulate real-world scenarios with temporally extended decision-making processes,
where elementary decisions do not directly reflect cooperativeness. In this project,
we re-implement the AMD algorithm and evaluate its performance in two SSD
environments, namely, Wolfpack and Gathering. Our results demonstrate that AMD
is unable to effectively encourage cooperation in these complex games. The code
for our project is accessible at https://github.com/quantaji/AMD-SSD.

1 Introduction

Social dilemmas describe the conflicts between individual and collective interests. Individuals’
behavior usually follows the principle of self-interest, which will inevitably impair the interests of
other people or groups. In the context of multi-agent reinforcement learning (MARL), each agent
behaves myopically, and the system would end up in a bad equilibrium, where the total reward of all
agents is not optimal. The concept of mechanism design emerges as an approach to alter systems in a
way that promotes cooperation.

One notable algorithm in this domain is the adaptive mechanism design (AMD) proposed by Bau-
mann et al.. In this algorithm, a central planner observes the states and actions of all agents and
provides additional rewards to each agent, with higher rewards granted for cooperative actions. The
effectiveness of this algorithm has been demonstrated in simple game environments, such as the
prisoner’s dilemma (PD).

However, real-world social dilemmas often extend temporally, where the cooperativeness is reflected
in the overall policy rather than individual actions at each time step. This more complex scenario is
referred to as a sequential social dilemma (SSD). Leibo et al. proposed two SSDs, namely Wolfpack
and Gathering. Our primary objective is to investigate how the AMD algorithm promotes cooperation
within these complex environments.

In this project, we aim to implement the AMD algorithm in the Wolfpack and Gathering SSDs. Our
contributions can be summarized as follows:

• We re-implement the AMD algorithm using ray.rllib, an open-source industry-grade
RL library. Unlike the original implementation limited to matrix games like the prisoner’s

Foundations of Reinforcement Learning, FS2023. Department of Computer Science, ETH Zürich.

https://github.com/quantaji/AMD-SSD

dilemma, our implementation is compatible with any multi-agent environment. To the best
of our knowledge, our code represents the first implementation to achieve this level of
generality. We validate our implementation using the prisoner’s dilemma and further modify
the algorithm to accommodate complex environments.

• We provide open-source implementations of the Wolfpack and Gathering environments. To
our knowledge, this is also the first publicly available implementation.

• Our experiments show negative results: AMD does not encourage cooperation in complex
SSDs.

2 Related Works

In the context of RL algorithms that encourage cooperation, Foerster et al. first proposed learning
with opponent learning awareness (LOLA). LOLA entails an agent being aware that its opponent
is also undergoing parameter updates, and it updates with respect to the look-ahead parameter,
∆θ1 = η∇1V1(θ1, θ2 +∆θ2) where ∆θ2 = δ∇2V2(θ1, θ2). The AMD algorithm [1] we implement
in this project adapts a similar formulation, where a central planner knows the update of each
individual agent. While LOLA has been demonstrated effective in matrix games, it fails to preserve
stable fixed points when the LOLA update is turned off. Willi et al. proposed consistent LOLA
(COLA) where the agent knows its opponent is also doing LOLA updates. The learning rule goes
∆θ1 = η∇1V1(θ1, θ2 + ∆θ2), ∆θ2 = η∇2V2(θ1 + ∆θ1, θ2). Instead of obtaining ∆θ1,2 directly
from gradients, COLA uses additional neural networks to approximate ∆θ1,2.

In the context of sequential social dilemmas, Leibo et al. proposed the Wolfpack and Gathering
environments. Wolfpack consists of two wolves and a prey, where the wolves can choose to capture
the prey either together or individually. Gathering, on the other hand, is a game where two predators
collect apples and can use a beam to eliminate opponents and prevent them from collecting apples.
Additionally, Jaques et al. introduced two other SSDs: a public goods game Cleanup, and a public
pool resource game Harvest.

3 Theory and Framework

In this section, we will provide a detailed explanation of our implementation of the AMD algorithm.
We will begin by discussing the general settings. Then, in sections 3.1 and 3.2, we will introduce the
update rules for agents and the central planner, respectively. Lastly, in section 3.3, we will describe
our efforts to improve the AMD algorithm.

In AMD, there are agents and an additional agent, central planner. Each agent with index i has an
observation space Oi and an action space Ai. The central planner observes a group of agents (with
index i = 1, . . . , N) that we wish to cooperate with. We let the central planner not able to observe all
the agents because it is possible that agents fall into opposite groups, for example, groups of wolves
and prey, and forcing the prey to give up its life to learn to cooperate makes no sense. Therefore, the
central planner only functions within a custom group of agents among whom we desire cooperation.

The central planner observes the observations and actions of the agents in the group. In strict
mathematical language, the observation space of the central planner is Op = Ca × Aa × Oa, a
denotes it comes from agents. Ca = C1×· · ·×CN is the presence table of all agents. Here Ci = {0, 1}.
We introduce this term because in a practical environment, some agents can get killed and be absent
at some time, and the central planner has to take this into account. Ap = A1 × · · · × AN is the
actions of the agents. Oa = O1 × · · · × ON is the observations of the agents. When some agent is
absent, its action and observation are filled with zeros. If the environment offers a more compact
state S that gives information about all agents, our implementation also allows the central planner to
switch to this observation, and Oa = S in this case.

At each time step, the central planner observes opt ∈ Op and delivers reward rpt = rp(opt , θp) =
[rp1(o

p
t , θp), . . . , r

p
N (opt , θp)]

⊤ ∈ RN . θp is the parameter of the central planner. In this project, rp is
deterministic, as it is in the original paper [1]. In the further, this can also be extended to a random
reward, where the central planner learns a policy πp(rp|opt , θp)

2

3.1 Update of Cooperating Agents

For each agent i in the group we would like them to cooperate, we assume it does some kind of policy
gradient update with policy πi(ai|oi, θi). It receives the actual reward ri,t from the environment, and
also the reward from central planner rpi,t. Since the policy gradient is linear to the rewards, the actual
policy gradient is also the sum of two policy gradient terms,

∆θi = ηi∇iJi + ηi∇iJ
p
i . (1)

The first part ∇iJi is the policy gradient of the back-end RL algorithm, it can be PPO or A3C, even
with the help of a neural parameterized critic. We treat it as a black box and leave it unchanged. For
the second part of the gradient, we do vanilla REINFORCE update,

∇iJ
p
i = E

[(∞∑
t=0

∇i log πi(ai,t|oi,t, θi)

)
×Rp

i

∣∣∣∣∣s0 ∼ µ0,
at∼π(·|st),

st+1∼P (·|st,at)
rt=r(st,at),

,∀ t ≥ 0

]
, (2)

where Rp
i =

∑∞
t=0 γ

trpi,t(o
p
i,t, θp) is the discounted accumulated rewards. For simplicity, we will

abbreviate sampling trajectory with Eτ [·|τ]. From eq. (2) we know ∇iJ
p
i is a function of θp.

To sum it up, the (minimization) loss for each agent is

Li = Li,backend + Li,amd, where Li,amd = −Eτ

[(∞∑
t=0

log πi(ai,t|oi,t)

)
×Rp

i

]
, (3)

and Li,backend = −Ji is the loss of the back-end algorithm.

3.2 Update of Central Planner

For the central planner, its update should maximize the total expected reward (or value) V (θ1:N) :=∑N
i=1 Vi(θ1:N). An intuitive idea is to maximize the value of the next time step V (θ1+∆θ1, . . . , θN+

∆θN), where each ∆θi depends on θp. To be clear from the beginning, we use the minimization
notation and set the corresponding loss to be Lp(θp) = −V (θ1 + ∆θ1, . . . , θN + ∆θN). Then,
we perform first-order Taylor expansion approximation, Lp(θp) = −

∑N
i=1 Vi(θ1 +∆θ1, . . . , θN +

∆θN) ≈ −
∑N

i,j=1 ∇jVi(θ1, . . . , θN)⊤∆θj − V (θ1, . . . , θN). We remove the last term because it
does not depend on θp, then

Lp(θp) = −
N∑
i=1

N∑
j=1

∇jVi(θ1, . . . , θN)⊤∆θj (4)

Here is where our project differs from the original paper. In [1], they chose a single-step prisoner
dilemma, where Vi can be exactly calculated as a function of each agent’s policy parameter. However,
this is not the case for general environments. Therefore, we have to approximate ∇jVi with policy
gradient (In the original paper, they refer to this approach as "estimate". They performed experiments
on this approach, but this was not their focus.). The policy gradient approximation for ∇jVi is

∇jVi ≈ Eτ

[∞∑
t=0

∇j log πj(aj,t|oj,t)Ψi,t

∣∣∣∣∣τ
]
, (5)

where Ψi,t can be all kinds of estimator, e.g., Aπ,γ (oj,t, aj,t) the biased GAE estimator, and Ri =∑∞
t=0 ri,t the total accumulated rewards. Then, ∇jV ≈ Eτ [

∑
t ∇j log πj,tΨt|τ], where Ψt =∑

i Ψi,t is the sum of advantage of all cooperating agents (we call Ψi,t as advantage for simplicity.).

We add eqs. (1) and (5) into the loss defined in eq. (4), then it becomes

Lp = −
N∑
i=1

Eτ

[∞∑
t=0

∇i log πi(ai,t|oi,t)Ψt

∣∣∣∣∣τ
]⊤

(ηi∇iJi + ηi∇iJ
p
i) . (6)

3

Since only ∇iJ
p
i is related to θp, we can remove ∇iJi from this loss. Therefore,

Lp = −
N∑
i=1

ηiEτ

[∞∑
t=0

∇i log πi(ai,t|oi,t)Ψt

]⊤
∇iJ

p
i

= −
N∑
i=1

ηi

Eτ

[∞∑
t=0

∇i log πi(ai,t|oi,t)Ψt

]⊤(∞∑
t′=0

∇i log πi(ai,t′ |oi,t′)

)×Rp
i .

(7)

In our implementation, we define an intermediate variable, which we call awareness,

wi,t := Eτ

[∞∑
t′=0

∇i log πi(ai,t′ |oi,t′)Ψt′

]⊤
∇i log πi(ai,t|oi,t), (8)

because it contains the updated (next-step) information of each agent. This quantity is pre-calculated
before the learning step. Then the loss for the central planner becomes a linear combination of all
rewards,

Lp := −
N∑
i=1

ηi

∞∑
t=0

wi,tR
p
i (θp). (9)

Except for this main loss, we can also add a regularization term ∥rpt ∥q, which is a q-norm, then the
total minimization loss is

Lcentral planner = Lp + αregLreg = −
N∑
i=1

ηi

∞∑
t=0

wi,tR
p
i (θp) + αreg

∞∑
t=0

∥rpt ∥q. (10)

Remark:

1. All environments may end or be truncated by actual implementation; the summation to
infinity is only an abbreviation for this.

2. It is possible that some agent i is absent at time step t. Then the awareness is zero, wi,t = 0,
and also it will not appear in the sum of advantage, Ψt =

∑
j ̸=i Ψj,t.

3. In actual implementation, the expectation is replaced with expectation w.r.t. the whole batch.
4. We use advantage function Ψi,t in the approximation of real value function Vi. In actual

implementation, this advantage might come from the critic. Therefore, we have to strictly
separate the update of the critic from the central planner’s rewards, so that the critic gives an
unbiased estimation of the real value function.

5. It might seem non-intuitive that the central planner’s loss is linearly dependent on its reward
since originally we want to maximize the total value function, but this can be inferred from
the Taylor expansion because ∆θi are all linearly dependent on central planner’s reward.

6. Awareness eq. (8) involves taking gradient w.r.t. agent’s parameters, ∇i log πi. In actual
neural networks, calculating this can be sophisticated and memory-consuming. Therefore,
we offer another option, assuming softmax parameterization π(a|s) = exp(θa,s)∑

a′ exp(θa′,s)
. We

denote these two options as neural and softmax. (See appendix A)

3.3 Modification: Interpreting Rewards as Q-value Adjustment

In the current setting of AMD, a drawback is that in both agents’ and the central planner’s loss, all
rewards appear in the accumulated form Rp

i (θp). Then each agent can only perceive the accumulated
reward Rp

i (θp), but it cannot tell what is the central planner’s reward at each time step. This means
that the central planner’s evaluation of the cooperativeness of the agent in an episode is only reflected
by this single scalar, which is very coarse, but in actual cases, an agent can behave both cooperatively
or defectively in a single episode.

Therefore, it would be nice if eq. (3) is in the form of −
∑

t log πi(ai,t|oi,t)× rpi,t and eq. (9) is in
the form of −

∑
t wi,t × rpi,t, so that the multiplication comes before summation. Then both agents

4

and the central planner know what is the planner’s reward at each time step, and then they can do a
more fine-grained update. To do this, we need a new interpretation of rpi,t to make it logically correct.

From policy gradient theorem, we know that ∇iJi = Eτ [∇i log πi,tQi(oi,t, ai,t)], and we think of
central planner delivers an adjustment qi(op,t; θp) of Q(oi,t, ai,t) to enhance cooperation,

∇iJi,new = Eτ [∇i log πi,t (Qi(oi,t, ai,t) + qi(op,t; θp))]

= Eτ [∇i log πi,tQi(oi,t, ai,t)] + Eτ [∇i log πi,tqi(op,t; θp)]

= −∇iLi,backend −∇iLi,amd,new.

In this interpretation, the Li,amd in eq. (3) becomes

Li,amd,new = −Eτ

[∞∑
t=0

∇i log πi(ai,t|oi,t)× qpi (op,t; θp)

]
, (11)

and the Lp in eq. (9) becomes

Lp,new = −
N∑
i=1

ηi

∞∑
t=0

wi,tq
p
i (op,t; θp). (12)

We have now logically justified our modified version of AMD.
Remark: It might be physically unimaginable that the central planner delivers q-value adjustment,
instead of actual rewards. However, the central planner in this case can be viewed as a reviewer that
gives comments on how cooperative each agent’s action is at each time step so that the agent can
adjust their evaluation of their action.

4 Sequential Social Dilemma Environments: Wolfpack and Gathering

Both environments are grid worlds, and agents are represented as dots on the grid. All agents have
an observation space O = R16×21×3, which is an RGB image as shown in Figure 1, and have a
basic action set A = {step forward, step right, step backward, step left, stand still, turn clockwise
and turn counterclockwise}. Black blocks are empty areas where agents can traverse, while grey
blocks are barriers. The dark grey block beside each agent denotes its head orientation. We choose
the pettingzoo library for its popularity and good compatibility with rllib.

4.1 Wolfpack

The Wolfpack game involves two predators, wolf_1 (blue) and wolf_2 (red) chasing the prey
(orange).The prey is considered caught if it overlaps with either of the wolves, and the episode ends.
To incentivize hunting, a starvation punishment of rstarve = −0.05 is assigned to the predators, while
a reward of rlive is given to the prey if it survives the current time step. If a wolf captures the prey
and the other wolf is within the prey an L1 radius of R = 6, then both wolves are rewarded rteam = 5,
otherwise, only the winning wolf will be rewarded rlone = 1.

A cooperative policy would be: when a wolf observes the prey, it waits inside the cooperative radius
R for the other wolf to join the capture together. On the other hand, a defective policy involves
the wolf directly chasing the prey regardless of the other wolf. Cooperativeness is quantified as the
percentage of episodes where wolves capture the prey together.

4.2 Gathering

In the Gathering game, the goal for the predators (blue and red) is to collect apples (green, maximum
number is 3 in our setting). A reward of rapple = 1 is assigned when a predator collects the apple, and
it disappears in the grid world, and re-generates after Napple = 3 frames in a random location. Similar
to Wolfpack, predators get a starvation punishment of rstarve = −0.05 if it gets nothing in this round.
Besides the basic actions, predators can also emit a beam (yellow) to wound their opponent. This
will reduce one blood of the opponent. If a predator is out of blood, it will be removed from the
environment and respawn after Ntag frames. In our current setting, the total blood of all agents is 1.

5

Figure 1: Wolfpack (left) and Gathering (right) environments. All agents have observation space
of RGB image of size 16 × 21 × 3, shown in the pink rectangle in the left figure. Predators are
marked as blue and red. In Wolfpack, the orange grid denotes the prey. If both predators are within a
capture radius (orange diamond shown on the left) when the prey is captured, they will be treated
as cooperative and rewarded more. In Gathering, predators can fire yellow beams at their head
orientation. Agents or apples hit by the beam will turn purple.

A defective policy would be aggressively emitting beams to kill its opponent and have all the apples
to themselves. Conversely, a cooperative policy would never emit beams. Cooperativeness in this
game is quantified by the percentage of time that each agent is alive in the game.

Remark 1 Note that cooperation tends to occur naturally when resources are abundant, such as when
the resource parameter R is large in Wolfpack or when Napple is large and Ntag is small in Gathering.
However, our primary focus is to examine whether AMD will still encourage cooperation when
resources become scarce.
Remark 2 Besides, we also implement PD for validation since it is easy to train. We use the same
setting as [1], where the payoff matrix is (C,C) = (3, 3), (C,D) = (0, 4) and (D,D) = (1, 1).

5 Implementation Details and Results

As previously mentioned, AMD is compatible with any policy gradient algorithm, we use vanilla
actor-critic and PPO as back-end algorithms. The former is used for debugging while the latter one is
for actual experiments.

For PD, the policy is either (1) a linear layer directly from input to output or (2) an MLP with two
hidden layers of width 32 and ReLU activation. The central planner’s policy is an MLP with two
hidden layers of width 128 and ReLU activation. The batch size is 1024 and the learning rate is 10−4.

The policy for Wolfpack and Gathering is a neural network that consists of (1) a convolution layer of
kernel 3, stride 1 and 6 output channels (2) flattened vectors are passed to two fully-connected layers
of width 32 with ReLU activation, (3) a 128-dim LSTM of 32-timestep window size (4) a linear
layer for output of critic and actor’s logits. LSTM is used to promote purposeful actions. Purely
convolution networks fail to learn an effective policy. (See appendix C). The central planner’s policy
is a two-hidden layer MLP with widths of 256 and 128, followed by an LSTM of size 32. The batch
size is 98304 and learning rate is 10−4. The training takes in total 14 million timesteps. Each PPO
update contains 10 SGD updates with 1/4 the batch size.

The central planner’s reward is deterministic. It is the tanh of output logits multiplied by a factor of
Rmax. In PD, Rmax = 3.0, while in Wolfpack and Gathering, Rmax = 0.05.

We choose ray.rllib as our reinforcement learning framework because it offers comprehensive RL
algorithms. We fix our version to be 2.3.1 (due to rapid change in ray’s API, migrating to the next
major version needs additional effort.). Also, we chose Pytorch as our deep learning framework
because we are more familiar with it, and the original paper was implemented in tensorflow so it is
more challenging. All of our experiments are run on an RTX3090 GPU of Euler.

5.1 Prisoner’s Dilemma

We experiment on the AMD algorithm with both simple (linear) and complex (MLP) policy models,
employing direct (referred to as neural) as well as softmax parameterization. Across all cases, while
PPO converged to a defective Nash equilibrium, AMD successfully promoted cooperation (see Figure

6

0 20000 40000 60000 80000 100000
time step

0.0

0.2

0.4

0.6

0.8

1.0

co
op

er
at

iv
en

es
s

Prisoner Dilemma: Cooperation Probability

trials
PPO + linear + neural
PPO + linear + softmax
PPO + MLP + neural
PPO + MLP + softmax
AMDPPO + linear + neural
AMDPPO + linear + softmax
AMDPPO + MLP + neural
AMDPPO + MLP + softmax

0 20000 40000 60000 80000 100000
time step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pl
an

ne
r r

ew
ar

d
no

rm

Prisoner Dilemma: Planner's reward

PPO + linear + neural
PPO + linear + softmax
PPO + MLP + neural
PPO + MLP + softmax
AMDPPO + linear + neural
AMDPPO + linear + softmax
AMDPPO + MLP + neural
AMDPPO + MLP + softmax

Figure 2: Training results of Prisoner Dilemma (PD). This figure left shows the probability of
choosing cooperative action, while the right figure shows the reward delivered by the central planner.
PPO/AMDPPO denotes the training algorithm. Linear/MLP denotes the agent’s policy model.
Neural/softmax denotes the parameter assumption in the AMD algorithm.

2). Notably, the MLP model converges faster, likely due to the adaptive nature of neural networks.
These results affirm the effectiveness of our implementation. Moreover, we observed an increase in
the cooperation probability, from 61.3% reported in the original paper to 100%. We attribute this to
the increase in batch size, from 1 to 1024.

We observed an interesting behavior where the central planner consistently strives to the maximum
reward Rmax, even when L1 or L2 regularization is applied. However, if the regularization factor is
set too high, the central planner provides no reward, leading the system back to the Nash equilibrium.
This behavior can be attributed to the linearity between the loss function eq. (9) and the reward.
The loss function only achieves its minimum when rp reaches Rmax. This drawback arises from
the mismatch between the linear loss and the reward regularization term and roots from the first-
order approximation in eq. (9). We leave it as a further direction to reconcile the main loss and the
regularization.

5.2 Wolfpack and Gathering

The top left of fig. 3 demonstrates the effectiveness of the training process. Even the original PPO
algorithm significantly reduced the average episode length from 200 to nearly 50. This indicates that
the wolves are actively searching for prey rather than moving randomly. However, training using the
AMD algorithm with accumulated reward (labeled as R in fig. 3) was unsuccessful. Training also
failed when applying the AMD loss term later in the training stage. These results led us to explore the
Q-value adjustment version of AMD described in section 3.3. Trials using this approach (denoted as
Q in fig. 3) were compatible with PPO and did not result in training failure. In our experiments, trials
with AMD do achieve higher rewards (fig. 3 top right). However, cooperativeness is indistinguishably
the same for AMD and PPO (fig. 3 bottom left). Therefore, the difference in rewards can be attributed
to randomness across trials. The results of Gathering (fig. 3 bottom right) also confirm the lack of
effectiveness of AMD.

However, it is noteworthy that we also experimented with a variant of the model that excludes LSTM
and utilizes only convolution layers. Naturally, this model yields poor performance. However, by
incorporating the AMD term during training, we were able to improve its performance significantly
(figs. 5 and 6). This suggests that while PPO may already be a sufficiently effective algorithm, AMD
demonstrates its capabilities primarily when PPO falls short.

6 Discussion

Our experiment shows that AMD does not enhance cooperation in sequential social dilemmas. One
possible reason for this could be the challenge of condensing the nuanced evaluation of cooperative-
ness into a single scalar reward, especially in complex real-world settings. The limited analytical
abilities of the central planner may also contribute to this outcome. Furthermore, the effective-
ness of PPO, which serves as a strong baseline, could overshadow any potential benefits of AMD.
Nevertheless, our negative findings are valuable for future research.

7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

0

200

400

600

800

1000

le
ng

th

Wolfpack: mean episode length

trials
AMD + LSTM + softmax + R + delay
AMD + LSTM + softmax + R
AMD + LSTM + neural + Q + delay
AMD + LSTM + softmax + Q + delay
PPO + LSTM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

14

12

10

8

6

4

2

0

re
wa

rd

Wolfpack: wolf 1 reward

trials
AMD + LSTM + neural + Q + delay
AMD + LSTM + softmax + Q + delay
PPO + LSTM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

co
op

er
at

iv
en

es
s

Wolfpack: cooperativeness
trials

AMD + LSTM + neural + Q + delay
AMD + LSTM + softmax + Q + delay
PPO + LSTM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

40

20

0

20

40

re
wa

rd

Gathering: blue predator reward

trials
AMD + LSTM + softmax + R + delay
AMD + LSTM + softmax + R
AMD + LSTM + neural + Q + delay
AMD + LSTM + softmax + Q + delay
PPO + LSTM

Figure 3: Training results of Wolfpack (Top left, top right and bottom left) and Gathering (bottom
right). PPO/AMDPPO denotes the training algorithm. Linear/MLP denotes the agent’s policy model.
Neural/softmax denotes the parameter assumption in the AMD algorithm. Q / R denotes whether
Q-adjustment or accumulated reward is used in the AMD algorithm. Delay means the AMD term is
applied in the middle stage of training.

Regarding the coding aspect, none of our team members have prior experience in RL training. We
encountered significant difficulties in comprehending the intricacies of the ray.rllib code base,
consuming a substantial portion of our time. Despite these challenges, we successfully implemented
the AMD algorithm, which exhibits generalizability to arbitrary multi-agent environments. We are
satisfied with our accomplishments.

7 Conclusion

In conclusion, our project aimed to investigate the effectiveness of the adaptive mechanism design
(AMD) algorithm in promoting cooperation within complex sequential social dilemma (SSD) envi-
ronments, and our experiments revealed negative results, indicating that AMD does not encourage
cooperation in such complex scenarios.

8 Contribution

• Guangda Ji implemented the main algorithm of AMD in ray.rllib and Wolfpack en-
vironment. He also conducted most of the experiments and writes the majority of this
report.

• Minxuan Qin implemented the Gathering environment, ran some experiments under it, and
helped by finishing up the poster and report.

• Xuanang Lei investigated the original implementation of AMD and gave valuable sugges-
tions. He also made the majority part of the poster.

8

References
[1] Tobias Baumann, Thore Graepel, and John Shawe-Taylor. Adaptive mechanism design: Learning

to promote cooperation. In 2020 International Joint Conference on Neural Networks (IJCNN),
pages 1–7. IEEE, 2020.

[2] Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and
Igor Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326,
2017.

[3] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent
deep reinforcement learning. In International conference on machine learning, pages 3040–3049.
PMLR, 2019.

[4] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037, 2017.

[5] Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent
learning with opponent-learning awareness. In International Conference on Machine Learning,
pages 23804–23831. PMLR, 2022.

9

A Choice of Parameterization

The calculation of awareness (eq. (8)) involves taking gradient w.r.t. agent’s parameters, ∇ log π.
In our implementation, we offer two options, param_assumption="neural|softmax". Option
neural means gradient is calculated w.r.t. network parameter, and softmax means π(a|s) are
assumed to be the softmax of pseudo parameter, π(a|s) = exp(θa,s)∑

a′ exp(θa′,s)
. Then the gradient is

∂ log π(a|s)
∂θa′,s′

= 1{s = s′, a = a′} − π(a′|s)1{s = s′}, (13)

and the awareness is,

wi,t =
∑

t′,a′,s′

Ψt′1{st′ = s′} (1{at′ = a′} − π(a′|st′))× 1{st = s′} (1{at = a′} − π(a′|st))

=
∑
t′,a′

Ψt′1{st′ = st} (1{at′ = a′} − π(a′|st′)) (1{at = a′} − π(a′|st)) .

We denote gt = Eat
− π(·|st) ∈ R|A| . Then, the awareness is,

wi,t =
∑
t′

Ψt′1{st′ = st}g⊤
t′gt. (14)

Note that, even in this simplified softmax parameter assumption, computing all the awareness requires
more than O(T 3)) time complexity and O(T 2) memory. Therefore, AMD does not scale very well
in this assumption.

B Central Planner’s reward in both games

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ce
nt

ra
l p

la
nn

er
 re

wa
rd

Wolfpack: planner's reward

trials
AMD + LSTM + softmax + R + delay
AMD + LSTM + softmax + R
AMD + LSTM + neural + Q + delay
AMD + LSTM + softmax + Q + delay
PPO + LSTM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

0.00

0.01

0.02

0.03

0.04

0.05

ce
nt

ra
l p

la
nn

er
 re

wa
rd

Gathering: planner's reward

trials
AMD + LSTM + softmax + R + delay
AMD + LSTM + softmax + R
AMD + LSTM + neural + Q + delay
AMD + LSTM + softmax + Q + delay
PPO + LSTM

Figure 4: Central planner’s reward of both games.

C Training results with only Convolution neural network

Our pure convolution network model consists of

• Conv Layer of kernel 4, stride 2, 16 output channels,
• Conv Layer of kernel 4, stride 2, 32 output channels,
• Conv Layer of kernel (4, 6), stride 1, 64 output channels,
• two fully connected layer of width 32 and ReLU activation,
• a linear layer to critic and policy’s logits.

All of our convolution network models fails to learn a working policy. Either the episode length is
extremely long, meaning it stays still or runs stupidly, or its reward is extremely low. However, with
the AMD algorithm and Q-value adjustments, the agents start to learn.

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

200

300

400

500

600

700

800

900

le
ng

th

Wolfpack: mean episode length

trials
AMD + Conv + neural + Q + delay
AMD + Conv + softmax + Q + delay
PPO + Conv
PPO + Conv (2nd)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

45

40

35

30

25

20

15

10

5

re
wa

rd

Wolfpack: wolf 1 reward

trials
AMD + Conv + neural + Q + delay
AMD + Conv + softmax + Q + delay
PPO + Conv
PPO + Conv (2nd)

Figure 5: Training results of Wolfpack using only convolution neural network without LSTM.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time step 1e7

50

48

46

44

42

40

re
wa

rd

Gathering: blue predator reward
trials

AMD + Conv + neural + Q + delay
AMD + Conv + softmax + Q + delay
PPO + Conv

Figure 6: Training results of Gathering using only convolution neural network without LSTM.

11

	Introduction
	Related Works
	Theory and Framework
	Update of Cooperating Agents
	Update of Central Planner
	Modification: Interpreting Rewards as Q-value Adjustment

	Sequential Social Dilemma Environments: Wolfpack and Gathering
	Wolfpack
	Gathering

	Implementation Details and Results
	Prisoner's Dilemma
	Wolfpack and Gathering

	Discussion
	Conclusion
	Contribution
	Choice of Parameterization
	Central Planner's reward in both games
	Training results with only Convolution neural network

