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Introduction to Knowledge distillation(KD)

* Vanilla training: only hard (one-hot) labels.

* example:
network (untrained) hard label
S '0'
1
_ i |:| |:| ] Lyanila = CrossEntropy(softmax(z), )
input logit 0
—O—




Introduction to Knowledge distillation(KD)

* Knowledge distillationl!: combinations of soft and
hard labels. example:

student (untrained) teacher (well trained)
I —0.1 0.13
0.63
I:I Z — 1.5 y. = softmax(z;) =
0 0 x t= |04 0.09
input logit logit 0.1 label 0.15
hard label soft label

0 0.13

1 0.63
Lxp = (1 — p)CrossEntropy (softmax(zs), 0 ) + pCrossEntropy(zs), 0.09 )

hard ratio 0 soft ratio 0.15

[1] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.



Introduction to Knowledge distillation(KD)

* KD is widely used in industry but
lacks a satisfying explanation.

* Ourwork is to
* establish a theoretical
understanding on KD.
* glve Instructions on the
optimal choice of parameters.



Introduction to Knowledge distillation(KD)

KD is widely used in industry but lacks a
EI : satisfying explanation.

* Qur contribution in this work:
* Transfer risk bound.

* Metric of data inefficiency for perfect
teacher distillation

Hard labels in imperfect distillation.



Problem Setup

* Binary classification,
* logit z€ R, hard label y € {0,1}, soft label y € [0,1]
* distillation loss:

1 N 1 N Zt.n Zsn
[ — ~ Zen == ZpH(a( ;; ), o 1; ) + (1 — p)H(Ygn,0(25n)) p: soft ratio
n=1 n=1 \_ _J — _/
~ ~
soft loss hard loss

* Assumption: the student network is wide and over-parameterized.
* convergence to global minimal?l,
* minimization at each sample point,

lim () = 2, 5 = 2(0(2/T) ~ o(a/T) + (1 - p)(o(2) ~ ) =O.

* Through this equation, student learns an effective logit. zs,eff (2t, Ys) = Z2s.
* Result in thresholds and discontinuities in the output function.

[2] Du, Simon, et al. "Gradient descent finds global minima of deep neural networks." ICML 2019.



Problem Setup

teacher's output function

—— right teacher
wrong teacher

!

student's learned output function

effective student logit zes, <
o

0
teacher's logit z

« Through this equation, student learns an effective logit zs.eff(2t, Ys) = Zs.
* Result in thresholds and discontinuities in the output function.



Problem Setup

* Assumption: the student network is wide and over-parameterized.
* The use of neural tangent kernel (NTK) techniquell.
* Approximate student network’s output with its linearized version,

f(; wnin) =~ f(x; wo) + A11915(5’3)

* where
* A, =w—wp € R’: weight change,
* ¢(z) = 8, f(z;wy) € RP - random feature.

* Also enable us to establish a direct link between network's weight change and its logits,
Ay = ¢(X)(O(X, X)) 'A,,
* where

¢ O(X,X) = ¢(X)T$(X): tangent kernel
* Az:z_f(x;wO)'

[3] Lee, Jaehoon, et al. "Wide neural networks of any depth evolve as linear models under gradient descent." Neurips 2019



Result 1: Transfer Risk Bound

* Transfer risk R : probability of different prediction w.r.t. teacher.
* Theorem 1 (Risk bound):

Rn S P(g T dn),

* n:sample size,

c a, =a(Ay,,Ay): angle between oracle weight change A, and student's weight change Ay,
* p(B): pdf of angle between random feature ¢(z) and oracle A,, .

* Tighter than the bound in [4].

[4] Phuong, Mary, and Christoph Lampert. "Towards understanding knowledge distillation." ICML 2019.



Result 1: Transfer Risk Bound

* Transfer risk /R : probability of different prediction w.r.t. teacher.

* Theorem 1 (Risk bound): -

Rn S p(? o an)a
* n:sample size,
* a, =a(A,,,A;): angle between oracle weight change A, and student's weight change A,
* p(B): pdf of angle between random feature ¢(x) and oracle A, .
* Tighter than the bound in [4].

* Key idea of this theorem:
* student learns a projection of oracle weight change
Ay = $(X)0,'9(X) Ay, = PaA,,

Ay student learned
/\

> V

*
oracle

\/
Ay, oracle

* a, decreases when more data isused. * Error region () in random feature space decreases

[4] Phuong, Mary, and Christoph Lampert. "Towards understanding knowledge distillation." ICML 2019.



Result 1: Transfer Risk Bound

* Good generalization happens when smaller angle is achieved with same amount of data.

* faster angle converging speed for pure soft distillation.
* explains the fast converging error for pure soft distillation.
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Result 2 & 3: Data Inefficiency and Imperfect KD

* Definition (Data inefficiency): the increasing speed of the norm of weight change,
Oln [|Ay |2

Olnn

Z(n) = n|[InE||Agpi1lly — mE[[Agp|ly] ~

* characterizes the converging speed of angle a, = a(Ay,,Ay) .
* more inefficient = task is harder to train.



Result 2 & 3: Data Inefficiency and Imperfect KD

* Two factors that reduces data inefficiency
1. early stopping epoch of teacher network,
2. higher soft ratio p.
both may have a smoothing effect on student output function.



Result 2 & 3: Data Inefficiency and Imperfect KD

* Imperfect teacher
* QOurrisk bound and data inefficiency assumes teacher is 100% accurate (perfect)
* results in a favor in pure soft distillation
* |f teacher have a chance of mistake,
* hard labels can partially correct the sign of student logits
* hard labels can reduce a, = a(Ay,,Ay)



Conclusion

* Transfer risk bound under NTK settings.

* Data Inefficiency
* early stopping and higher soft ratio are beneficial for perfect

distillation.

* Hard labels are need in imperfect distillation as a trade-off
against teacher's mistake.

See our paper at https://arxiv.org/abs/2010.10090
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