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Introduction
Knowledge distillation(KD)1 is a model compression method that use a trained
teacher network to train a smaller student network, so that the student can gen-
eralize better. However KD still lacks a satisfying explanation. In this work, we give
theoretical analysis with recent neural tangent kernel2,3 technique.
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Contribution:
•We give an improved transfer risk bound that explains the fast convergence

behavior of test error in pure soft label perfect distillation.
•We give a metric on the task’s difficulty, called data inefficiency, and show that

teacher’s early stopping and higher soft ratio can reduce data inefficiency.
• In practical KD, the teacher is imperfect. We show that adding a little portion of

hard label is necessary for better generalization.

Problem Setup
Problem: Binary classification problem with ground truth decision boundary yg =

1{fg(x) > 0} ∈ {0, 1}, and input distribution P (x ∈ Rd).
Method: Use gradient descent to train a student network zs = f (x;w), with w being
its weights, and with loss of,
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· H(p, q): binary cross-entropy loss,

· σ(z): sigmoid function,

· yt,n = σ(zt,n/T ): teacher’s soft labels,

· zs,n = f (xn;w) : student’s logits,

· ρ: soft ratio,

· T : temperature.

Assumption
The student is wide and over-parameterized .

Corollary 1: The student network converges to global minima4 that minimize the
loss at each sample point, so that,
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dẑs
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T
(σ(ẑs/T )− σ(zt/T )) + (1− ρ)(σ(ẑs)− yg) = 0.

Solution to Eq. 1 defines an effective student logit zs,eff(zt, yg). This results in dis-
continuities in student’s learned output function.
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Corollary 2: The student network can be approximated with its linear version,

f (x;wnlin) ≈ f (x;w0) + (w − w0)>∂wf (x;w0) = f (x;w0) + ∆>wφ(x),

· w0: initial weight, · ∆w: weight change, · φ(x): random feature,
and the converged student weight change is,

∆ŵ = φ(X)(Θ̂(X,X))−1∆z,

· Θ̂(X,X) = φ(X)Tφ(X): empirical tangent kernel, Θ̂(X,X) ≈ Θ(X,X),

· Θ(X,X) = limwidth→∞ Θ̂(X,X): neural tangent kernel(NTK).

· ∆z = z− f (X;w0).

Result 1: Risk Bound
Assumption: Teacher network is perfect and can be represented by an oracle
weight change ∆w∗ in random feature space.
Notation:

· Transfer risk R = P
x∼P (x)

[zt · zs < 0], · ᾱ(a, b) = cos−1(|a>b|/|a| · |b|),
· Zero weight change ∆wz, f (x;w0) + ∆>wz

φ(x) ≈ 0,

· Angle distribution p(β) = P
x∼P (x)

[ᾱ(φ(x),∆w∗ −∆wz) > β], for β ∈ [0, π/2].

Theorem (Risk Bound)
Given n training samples X = [x1, · · · , xn], denote ᾱn = ᾱ(∆w∗ −∆wz,∆ŵ −∆wz),
then the transfer risk is bounded by,

Rn ≤ p(π/2− ᾱn).

Key idea: The student learns a projection , ∆ŵ = φ(X)Θ−1
n φ(X)>∆w∗ = PΦ∆w∗,

so that ᾱn decreases with n and the wrong prediction area decrease. Smaller ᾱn
means better generalization.
Finding: Experimentally observed smaller generalization error on pure soft distil-
lation can be explained by faster converging speed of ᾱn w.r.t. n.
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Our bound is improved compared to previous work.5

Result 2: Data Inefficiency
Definition
Data inefficiency is a discrete form of ∂ ln ||∆ŵ,n||2/∂ lnn,

I(n) = n [lnE||∆ŵ,n+1||2 − lnE||∆ŵ,n||2]

where ||∆ŵ,n||2 =
√

∆>znΘ
−1
n ∆zn is the norm of student’s converged weight change

trained by n samples.

Findings:
• Data inefficiency reveals the difficulty of weight recovery, which measures how

well the student recovery the oracle weight with given amount of data.
•We use difficulty control experiments and demonstrate that data inefficiency is

positively correlated to the difficulty of given task.
• In KD, two factors can reduce data inefficiency, both factors have smoothing

effect on student’s output function,

· Early stopping of teacher, · Higher soft ratio ρ.
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Result 3: Imperfect Teacher
Findings: In practical KD, teacher is not perfect. Both real and synthetic experi-
ments show that ρ = 1 is not optimal, and a little portion of hard label is needed.
Explanations:
• Locally: Effective student logits zs,eff(zt, yg) has the function of moving the

student logits closer to correct prediction region.
• Globally: Adding hard labels can reduce the angle α(∆ŵ,∆wg) between the

weights of oracle and student,

∂ cosα(∆ŵ,∆wg)
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= 〈δŵh

,∆ŵc〉,

〈δŵh
,∆ŵc〉 > 0 when teacher makes more mistake than the best of hard label

training student.
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